Superconducting qubit to optical photon transduction
Arute, F. et al. Quantum supremacy utilizing a programmable superconducting processor. Nature 574, 505– 510 (2019 ).
Briegel, H., Dür, W., Cirac, J. I. & & Zoller, P. Quantum repeaters: the function of imperfect regional operations in quantum interaction. Phys. Rev. Lett 81, 5932– 5935 (1998 ).
O’Connell, A. D. et al. Quantum ground state and single-phonon control of a mechanical resonator. Nature 464, 697– 703 (2010 ).
Meenehan, S. M. et al. Pulsed excitation characteristics of an optomechanical crystal resonator near its quantum ground state of movement. Phys. Rev. X 5, 041002 (2015 ).
Muralidharan, S. et al. Optimum architectures for far away quantum interaction. Sci. Associate 6, 20463 (2016 ).
Monroe, C. et al. Massive modular quantum-computer architecture with atomic memory and photonic interconnects. Phys. Rev. A 89, 022317 (2014 ).
Fitzsimons, J. F. Private quantum calculation: an intro to blind quantum computing and associated procedures. npj Quantum Inf 3, 23 (2017 ).
Devoret, M. H. & & Schoelkopf, R. J. Superconducting circuits for quantum info: an outlook. Science 339, 1169– 1174 (2013 ).
Kimble, H. J. The quantum web. Nature 453, 1023– 1030 (2008 ).
O’Brien, J. L., Furusawa, A. & & Vuckovic, J. Photonic quantum innovations. Nat. Photon 3, 687– 695 (2009 ).
Reagor, M. et al. Reaching 10 ms single photon life times for superconducting aluminum cavities. Appl. Phys. Lett 102, 192604 (2013 ).
Fan, L. et al. Superconducting cavity electro-optics: a platform for meaningful photon conversion in between superconducting and photonic circuits. Sci. Adv 4, eaar4994 (2018 ).
Hisatomi, R. et al. Bidirectional conversion in between microwave and light by means of ferromagnetic magnons. Phys. Rev. B 93, 174427 (2016 ).
O’Brien, C., Lauk, N., Blum, S., Morigi, G. & & Fleischhauer, M. Interfacing superconducting qubits and telecom photons by means of a rare-earth-doped crystal. Phys. Rev. Lett 113, 063603 (2014 ).
Lambert, N. J., Rueda, A., Sedlmeir, F. & & Schwefel, H. G. L. Coherent conversion in between microwave and optical photons– an introduction of physical applications. Adv. Quantum Technol 3, 1900077 (2020 ).
Teufel, J. D. et al. Sideband cooling of micromechanical movement to the quantum ground state. Nature 475, 359– 363 (2011 ).
Chan, J. et al. Laser cooling of a nanomechanical oscillator into its quantum ground state. Nature 478, 89– 92 (2011 ).
Bochmann, J., Vainsencher, A., Awschalom, D. D. & & Cleland, A. N. Nanomechanical coupling in between microwave and optical photons. Nat. Phys 9, 712– 716 (2013 ).
Andrews, R. W. et al. Bidirectional and effective conversion in between microwave and optical light. Nat. Phys 10, 321– 326 (2014 ).
Bagci, T. et al. Optical detection of radio waves through a nanomechanical transducer. Nature 507, 81– 85 (2014 ).
Balram, K. C., Davanço, M. I., Tune, J. D. & & Srinivasan, K. Coherent coupling in between radiofrequency, optical and acoustic waves in piezo-optomechanical circuits. Nat. Photon 10, 346– 352 (2016 ).
Forsch, M. et al. Microwave-to-optics conversion utilizing a mechanical oscillator in its quantum groundstate. Nat. Phys . 16, 69– 74 (2020 ).
Higginbotham, A. P. et al. Utilizing electro-optic connections in an effective mechanical converter. Nat. Phys 14, 1038– 1042 (2018 ).
Zeuthen, E., Schliesser, A., Sørensen, A. S. & & Taylor, J. M. Figures of benefit for quantum transducers. Preprint at https://arXiv.org/1610.01099v2 (2017 ).
Aspelmeyer, M., Kippenberg, T. J. & & Marquardt, F. Cavity optomechanics. Rev. Mod. Phys 86, 1391– 1452 (2014 ).
Chu, Y. et al. Quantum acoustics with superconducting qubits. Science 358, 199– 202 (2017 ).
Arrangoiz-Arriola, P. et al. Solving the energy levels of a nanomechanical oscillator. Nature 571, 537– 540 (2019 ).
Hong, S. et al. Hanbury Brown and Twiss interferometry of single phonons from an optomechanical resonator. Science 358, 203– 206 (2017 ).
Keller, A. J. et al. Al transmon qubits on silicon-on-insulator for quantum gadget combination. Appl. Phys. Lett 111, 042603 (2017 ).
Chan, J., Safavi-Naeini, A. H., Hill, J. T., Meenehan, S. & & Painter, O. Optimized optomechanical crystal cavity with acoustic radiation guard. Appl. Phys. Lett 101, 081115 (2012 ).
Fang, K., Matheny, M. H., Luan, X. & & Painter, O. Optical transduction and routing of microwave phonons in cavity-optomechanical circuits. Nat. Photonics 10, 489– 496 (2016 ).
Cohen, J. D. et al. Phonon counting and strength interferometry of a nanomechanical resonator. Nature 520, 522– 525 (2015 ).
Johnson, M. Direct actual time measurement of quasiparticle life times in a superconductor. Phys. Rev. Lett 67, 374– 377 (1991 ).
Borselli, M., Johnson, T. J. & & Painter, O. Determining the function of surface area chemistry in silicon microphotonics. Appl. Phys. Lett 88, 131114 (2006 ).
Ren, H. et al. Two-dimensional optomechanical crystal cavity with high quantum cooperativity. Nat. Commun 11, 3373 (2020 ).
Qiu, L., Shomroni, I., Seidler, P. & & Kippenberg, T. J. Laser cooling of a nanomechanical oscillator to its zero-point energy. Phys. Rev. Lett 124, 173601 (2020 ).
MacCabe, G. S. et al. Nano-acoustic resonator with ultralong phonon life time. Science 370, 840– 843 (2020 ).
Wang, C. et al. Measurement and control of quasiparticle characteristics in a superconducting qubit. Nat. Commun 5, 5836 (2014 ).