Superconducting qubit to optical photon transduction


  • 1.

    Arute, F. et al. Quantum supremacy utilizing a programmable superconducting processor. Nature 574, 505– 510 (2019 ).

    ADS
    CAS
    Article

    Google Scholar

  • 2.

    Briegel, H., Dür, W., Cirac, J. I. & & Zoller, P. Quantum repeaters: the function of imperfect regional operations in quantum interaction. Phys. Rev. Lett 81, 5932– 5935 (1998 ).

    ADS
    CAS
    Article

    Google Scholar

  • 3.

    O’Connell, A. D. et al. Quantum ground state and single-phonon control of a mechanical resonator. Nature 464, 697– 703 (2010 ).

    ADS
    Article

    Google Scholar

  • 4.

    Meenehan, S. M. et al. Pulsed excitation characteristics of an optomechanical crystal resonator near its quantum ground state of movement. Phys. Rev. X 5, 041002 (2015 ).


    Google Scholar

  • 5.

    Muralidharan, S. et al. Optimum architectures for far away quantum interaction. Sci. Associate 6, 20463 (2016 ).

    ADS
    CAS
    Article

    Google Scholar

  • 6.

    Monroe, C. et al. Massive modular quantum-computer architecture with atomic memory and photonic interconnects. Phys. Rev. A 89, 022317 (2014 ).

    ADS
    Article

    Google Scholar

  • 7.

    Fitzsimons, J. F. Private quantum calculation: an intro to blind quantum computing and associated procedures. npj Quantum Inf 3, 23 (2017 ).

    ADS
    Article

    Google Scholar

  • 8.

    Devoret, M. H. & & Schoelkopf, R. J. Superconducting circuits for quantum info: an outlook. Science 339, 1169– 1174 (2013 ).

    ADS
    CAS
    Article

    Google Scholar

  • 9.

    Kimble, H. J. The quantum web. Nature 453, 1023– 1030 (2008 ).

    ADS
    CAS
    Article

    Google Scholar

  • 10.

    O’Brien, J. L., Furusawa, A. & & Vuckovic, J. Photonic quantum innovations. Nat. Photon 3, 687– 695 (2009 ).

    ADS
    Article

    Google Scholar

  • 11.

    Reagor, M. et al. Reaching 10 ms single photon life times for superconducting aluminum cavities. Appl. Phys. Lett 102, 192604 (2013 ).

    ADS
    Article

    Google Scholar

  • 12.

    Fan, L. et al. Superconducting cavity electro-optics: a platform for meaningful photon conversion in between superconducting and photonic circuits. Sci. Adv 4, eaar4994 (2018 ).

    ADS
    CAS
    Article

    Google Scholar

  • 13.

    Hisatomi, R. et al. Bidirectional conversion in between microwave and light by means of ferromagnetic magnons. Phys. Rev. B 93, 174427 (2016 ).

    ADS
    Article

    Google Scholar

  • 14.

    O’Brien, C., Lauk, N., Blum, S., Morigi, G. & & Fleischhauer, M. Interfacing superconducting qubits and telecom photons by means of a rare-earth-doped crystal. Phys. Rev. Lett 113, 063603 (2014 ).

    ADS
    Article

    Google Scholar

  • 15.

    Lambert, N. J., Rueda, A., Sedlmeir, F. & & Schwefel, H. G. L. Coherent conversion in between microwave and optical photons– an introduction of physical applications. Adv. Quantum Technol 3, 1900077 (2020 ).

    CAS
    Article

    Google Scholar

  • 16.

    Teufel, J. D. et al. Sideband cooling of micromechanical movement to the quantum ground state. Nature 475, 359– 363 (2011 ).

    ADS
    CAS
    Article

    Google Scholar

  • 17.

    Chan, J. et al. Laser cooling of a nanomechanical oscillator into its quantum ground state. Nature 478, 89– 92 (2011 ).

    ADS
    CAS
    Article

    Google Scholar

  • 18.

    Bochmann, J., Vainsencher, A., Awschalom, D. D. & & Cleland, A. N. Nanomechanical coupling in between microwave and optical photons. Nat. Phys 9, 712– 716 (2013 ).

    CAS
    Article

    Google Scholar

  • 19.

    Andrews, R. W. et al. Bidirectional and effective conversion in between microwave and optical light. Nat. Phys 10, 321– 326 (2014 ).

    CAS
    Article

    Google Scholar

  • 20.

    Bagci, T. et al. Optical detection of radio waves through a nanomechanical transducer. Nature 507, 81– 85 (2014 ).

    ADS
    CAS
    Article

    Google Scholar

  • 21.

    Balram, K. C., Davanço, M. I., Tune, J. D. & & Srinivasan, K. Coherent coupling in between radiofrequency, optical and acoustic waves in piezo-optomechanical circuits. Nat. Photon 10, 346– 352 (2016 ).

    ADS
    CAS
    Article

    Google Scholar

  • 22.

    Forsch, M. et al. Microwave-to-optics conversion utilizing a mechanical oscillator in its quantum groundstate. Nat. Phys . 16, 69– 74 (2020 ).

    CAS
    Article

    Google Scholar

  • 23.

    Higginbotham, A. P. et al. Utilizing electro-optic connections in an effective mechanical converter. Nat. Phys 14, 1038– 1042 (2018 ).

    CAS
    Article

    Google Scholar

  • 24.

    Zeuthen, E., Schliesser, A., Sørensen, A. S. & & Taylor, J. M. Figures of benefit for quantum transducers. Preprint at https://arXiv.org/1610.01099v2 (2017 ).

  • 25.

    Aspelmeyer, M., Kippenberg, T. J. & & Marquardt, F. Cavity optomechanics. Rev. Mod. Phys 86, 1391– 1452 (2014 ).

    ADS
    Article

    Google Scholar

  • 26.

    Chu, Y. et al. Quantum acoustics with superconducting qubits. Science 358, 199– 202 (2017 ).

    ADS
    MathSciNet
    CAS
    Article

    Google Scholar

  • 27.

    Arrangoiz-Arriola, P. et al. Solving the energy levels of a nanomechanical oscillator. Nature 571, 537– 540 (2019 ).

    ADS
    CAS
    Article

    Google Scholar

  • 28.

    Hong, S. et al. Hanbury Brown and Twiss interferometry of single phonons from an optomechanical resonator. Science 358, 203– 206 (2017 ).

    ADS
    MathSciNet
    CAS
    Article

    Google Scholar

  • 29.

    Keller, A. J. et al. Al transmon qubits on silicon-on-insulator for quantum gadget combination. Appl. Phys. Lett 111, 042603 (2017 ).

    ADS
    Article

    Google Scholar

  • 30.

    Chan, J., Safavi-Naeini, A. H., Hill, J. T., Meenehan, S. & & Painter, O. Optimized optomechanical crystal cavity with acoustic radiation guard. Appl. Phys. Lett 101, 081115 (2012 ).

    ADS
    Article

    Google Scholar

  • 31.

    Fang, K., Matheny, M. H., Luan, X. & & Painter, O. Optical transduction and routing of microwave phonons in cavity-optomechanical circuits. Nat. Photonics 10, 489– 496 (2016 ).

    ADS
    CAS
    Article

    Google Scholar

  • 32.

    Cohen, J. D. et al. Phonon counting and strength interferometry of a nanomechanical resonator. Nature 520, 522– 525 (2015 ).

    ADS
    CAS
    Article

    Google Scholar

  • 33.

    Johnson, M. Direct actual time measurement of quasiparticle life times in a superconductor. Phys. Rev. Lett 67, 374– 377 (1991 ).

    ADS
    CAS
    Article

    Google Scholar

  • 34.

    Borselli, M., Johnson, T. J. & & Painter, O. Determining the function of surface area chemistry in silicon microphotonics. Appl. Phys. Lett 88, 131114 (2006 ).

    ADS
    Article

    Google Scholar

  • 35.

    Ren, H. et al. Two-dimensional optomechanical crystal cavity with high quantum cooperativity. Nat. Commun 11, 3373 (2020 ).

    ADS
    Article

    Google Scholar

  • 36.

    Qiu, L., Shomroni, I., Seidler, P. & & Kippenberg, T. J. Laser cooling of a nanomechanical oscillator to its zero-point energy. Phys. Rev. Lett 124, 173601 (2020 ).

    ADS
    CAS
    Article

    Google Scholar

  • 37.

    MacCabe, G. S. et al. Nano-acoustic resonator with ultralong phonon life time. Science 370, 840– 843 (2020 ).

  • 38.

    Wang, C. et al. Measurement and control of quasiparticle characteristics in a superconducting qubit. Nat. Commun 5, 5836 (2014 ).

    ADS
    CAS
    Article

    Google Scholar



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *