Spatial connection matches instructions selectivity in visual cortex
Wertz, A. et al. Single-cell-initiated monosynaptic tracing exposes layer-specific cortical network modules. Science 349 , 70– 74( 2015).
Ko, H. et al. Practical uniqueness of regional synaptic connections in neocortical networks. Nature 473, 87– 91 (2011 ).
Iacaruso, M. F., Gasler, I. T. & & Hofer, S. B. Synaptic company of visual area in main visual cortex. Nature 547, 449– 452 (2017 ).
Lee, W. C. et al. Anatomy and function of an excitatory network in the visual cortex. Nature 532, 370– 374 (2016 ).
Wilson, D. E., Whitney, D. E., Scholl, B. & & Fitzpatrick, D. Orientation selectivity and the practical clustering of synaptic inputs in main visual cortex. Nat. Neurosci 19, 1003– 1009 (2016 ).
Cossell, L. et al. Practical company of excitatory synaptic strength in main visual cortex. Nature 518, 399– 403 (2015 ).
Wilson, D. E., Scholl, B. & & Fitzpatrick, D. Differential tuning of excitation and inhibition shapes instructions selectivity in ferret visual cortex. Nature 560, 97– 101 (2018 ).
Chen, T. W. et al. Ultrasensitive fluorescent proteins for imaging neuronal activity. Nature 499, 295– 300 (2013 ).
Jia, H., Rochefort, N. L., Chen, X. & & Konnerth, A. Dendritic company of sensory input to cortical nerve cells in vivo. Nature 464, 1307– 1312 (2010 ).
Packer, A. M. & & Yuste, R. Dense, unspecific connection of neocortical parvalbumin-positive interneurons: a canonical microcircuit for inhibition? J. Neurosci 31, 13260– 13271 (2011 ).
Hofer, S. B. et al. Differential connection and action characteristics of excitatory and repressive nerve cells in visual cortex. Nat. Neurosci 14, 1045– 1052 (2011 ).
Wickersham, I. R. et al. Monosynaptic limitation of transsynaptic tracing from single, genetically targeted nerve cells. Nerve Cell 53, 639– 647 (2007 ).
Barlow, H. B. & & Levick, W. R. The system of directionally selective systems in bunny’s retina. J. Physiol. (Lond.) 178, 477– 504 (1965 ).
Fried, S. I., Münch, T. A. & & Werblin, F. S. Systems and circuitry underlying directional selectivity in the retina. Nature 420, 411– 414 (2002 ).
Briggman, K. L., Helmstaedter, M. & & Denk, W. Circuitry uniqueness in the direction-selectivity circuit of the retina. Nature 471, 183– 188 (2011 ).
Vaney, D. I., Sivyer, B. & & Taylor, W. R. Instructions selectivity in the retina: proportion and asymmetry in structure and function. Nat. Rev. Neurosci 13, 194– 208 (2012 ).
Kim, J. S. et al. Space-time circuitry uniqueness supports instructions selectivity in the retina. Nature 509, 331– 336 (2014 ).
Alonso, J. M. & & Martinez, L. M. Practical connection in between easy cells and complicated cells in feline striate cortex. Nat. Neurosci 1, 395– 403 (1998 ).
Priebe, N. J. Systems of orientation selectivity in the main visual cortex. Annu. Rev. Vis. Sci 2, 85– 107 (2016 ).
Isaacson, J. S. & & Scanziani, M. How inhibition forms cortical activity. Nerve Cell 72, 231– 243 (2011 ).
Liu, B. H. et al. Broad inhibition hones orientation selectivity by broadening input vibrant variety in mouse easy cells. Nerve Cell 71, 542– 554 (2011 ).
Znamenskiy, P. et al. Practical selectivity and particular connection of repressive nerve cells in main visual cortex. Preprint at https://doi.org/10.1101/294835 (2018 ).
Lee, S. H. et al. Activation of particular interneurons enhances V1 function selectivity and visual understanding. Nature 488, 379– 383 (2012 ).
Atallah, B. V., Bruns, W., Carandini, M. & & Scanziani, M. Parvalbumin-expressing interneurons linearly change cortical actions to visual stimuli. Nerve Cell 73, 159– 170 (2012 ).
Wilson, N. R., Runyan, C. A., Wang, F. L. & & Sur, M. Department and subtraction by unique cortical repressive networks in vivo Nature 488, 343– 348 (2012 ).
Ma, W. P. et al. Graphes by cortical somatostatin repressive nerve cells– selective however with weak and postponed actions. J. Neurosci 30, 14371– 14379 (2010 ).
Monier, C., Chavane, F., Baudot, P., Graham, L. J. & & Frégnac, Y. Orientation and instructions selectivity of synaptic inputs in visual cortical nerve cells: a variety of mixes produces spike tuning. Nerve Cell 37, 663– 680 (2003 ).
Livingstone, M. S. Systems of instructions selectivity in macaque V1. Nerve Cell 20, 509– 526 (1998 ).
Xu, X. et al. Main visual cortex reveals laminar-specific and well balanced circuit company of excitatory and repressive synaptic connection. J. Physiol. (Lond.) 594, 1891– 1910 (2016 ).
Adesnik, H. & & Scanziani, M. Lateral competitors for cortical area by layer-specific horizontal circuits. Nature 464, 1155– 1160 (2010 ).
Holmgren, C., Harkany, T., Svennenfors, B. & & Zilberter, Y. Pyramidal cell interaction within regional networks in layer 2/3 of rat neocortex. J. Physiol. (Lond.) 551, 139– 153 (2003 ).
Weiler, S. et al. Relationship in between input connection, morphology and orientation tuning of layer 2/3 pyramidal cells in mouse visual cortex. Preprint at bioRxiv https://doi.org/10.1101/2020.06.03.127191 (2020 ).
Sun, W., Tan, Z., Mensh, B. D. & & Ji, N. Thalamus offers layer 4 of main visual cortex with orientation- and direction-tuned inputs. Nat. Neurosci 19, 308– 315 (2016 ).
Ringach, D. L. et al. Spatial clustering of tuning in mouse main visual cortex. Nat. Commun 7, 12270 (2016 ).
Marques, T., Nguyen, J., Fioreze, G. & & Petreanu, L. The practical company of cortical feedback inputs to main visual cortex. Nat. Neurosci 21, 757– 764 (2018 ).
Bonin, V., Histed, M. H., Yurgenson, S. & & Reid, R. C. Resident variety and fine-scale company of responsive fields in mouse visual cortex. J. Neurosci 31, 18506– 18521 (2011 ).
Garrett, M. E., Nauhaus, I., Marshel, J. H. & & Callaway, E. M. Topography and areal company of mouse visual cortex. J. Neurosci 34, 12587– 12600 (2014 ).
Haider, B., Häusser, M. & & Carandini, M. Inhibition controls sensory actions in the awake cortex. Nature 493, 97– 100 (2013 ).
Liu, B. H. et al. Stepping in inhibition underlies simple-cell responsive field structure in visual cortex. Nat. Neurosci 13, 89– 96 (2010 ).
Li, Y. T., Liu, B. H., Chou, X. L., Zhang, L. I. & & Tao, H. W. Conditioning of instructions selectivity by broadly tuned and spatiotemporally somewhat balanced out inhibition in mouse visual cortex. Cereb. Cortex 25, 2466– 2477 (2015 ).
Lien, A. D. & & Scanziani, M. Tuned thalamic excitation is enhanced by visual cortical circuits. Nat. Neurosci 16, 1315– 1323 (2013 ).
Li, Y. T., Ibrahim, L. A., Liu, B. H., Zhang, L. I. & & Tao, H. W. Linear improvement of thalamocortical input by intracortical excitation. Nat. Neurosci 16, 1324– 1330 (2013 ).
Hillier, D. et al. Causal proof for retina-dependent and -independent visual movement calculations in mouse cortex. Nat. Neurosci 20, 960– 968 (2017 ).
Cruz-Martín, A. et al. A devoted circuit links direction-selective retinal ganglion cells to the main visual cortex. Nature 507, 358– 361 (2014 ).
Lien, A. D. & & Scanziani, M. Cortical instructions selectivity emerges at merging of thalamic synapses. Nature 558, 80– 86 (2018 ).
Thiele, A., Distler, C., Korbmacher, H. & & Hoffmann, K. P. Contribution of repressive systems to instructions selectivity and action normalization in macaque middle temporal location. Proc. Natl Acad. Sci. U.S.A. 101, 9810– 9815 (2004 ).
Madisen, L. et al. Transgenic mice for intersectional targeting of neural sensing units and effectors with high uniqueness and efficiency. Nerve Cell 85, 942– 958 (2015 ).
Wekselblatt, J. B., Flister, E. D., Piscopo, D. M. & & Niell, C. M. Massive imaging of cortical characteristics throughout sensory understanding and habits. J. Neurophysiol 115, 2852– 2866 (2016 ).
Gorski, J. A. et al. Cortical excitatory nerve cells and glia, however not GABAergic nerve cells, are produced in the Emx1-expressing family tree. J. Neurosci 22, 6309– 6314 (2002 ).
Mayford, M. et al. Control of memory development through controlled expression of a CaMKII transgene. Science 274, 1678– 1683 (1996 ).
Peron, S. P., Freeman, J., Iyer, V., Guo, C. & & Svoboda, K. A cellular resolution map of barrel cortex activity throughout tactile habits. Nerve Cell 86, 783– 799 (2015 ).
Wickersham, I. R., Finke, S., Conzelmann, K. K. & & Callaway, E. M. Retrograde neuronal tracing with a deletion-mutant rabies infection. Nat. Techniques 4, 47– 49 (2007 ).
Marshel, J. H., Mori, T., Nielsen, K. J. & & Callaway, E. M. Targeting single neuronal networks for gene expression and cell labeling in vivo. Nerve Cell 67, 562– 574 (2010 ).
Rancz, E. A. et al. Transfection by means of whole-cell recording in vivo: bridging single-cell physiology, genes and connectomics. Nat. Neurosci 14, 527– 532 (2011 ).
Osakada, F. et al. New rabies infection variations for tracking and controling activity and gene expression in specified neural circuits. Nerve Cell 71, 617– 631 (2011 ).
Goldey, G. J. et al. Detachable cranial windows for long-lasting imaging in awake mice. Nat. Procedures 9, 2515– 2538 (2014 ).
Judkewitz, B., Rizzi, M., Kitamura, K. & & Häusser, M. Targeted single-cell electroporation of mammalian nerve cells in vivo. Nat. Procedures 4, 862– 869 (2009 ).
Kitamura, K., Judkewitz, B., Kano, M., Denk, W. & & Häusser, M. Targeted patch-clamp recordings and single-cell electroporation of unlabeled nerve cells in vivo. Nat. Techniques 5, 61– 67 (2008 ).
Pologruto, T. A., Sabatini, B. L. & & Svoboda, K. ScanImage: versatile software application for running laser scanning microscopic lens. Biomed. Eng. Online 2, 13 (2003 ).
Kim, E. J., Jacobs, M. W., Ito-Cole, T. & & Callaway, E. M. Improved monosynaptic neural circuit tracing utilizing crafted rabies infection glycoproteins. Cell Associate 15, 692– 699 (2016 ).
Drobizhev, M., Makarov, N. S., Tillo, S. E., Hughes, T. E. & & Rebane, A. Two-photon absorption homes of fluorescent proteins. Nat. Techniques 8, 393– 399 (2011 ).
Brondi, M., Sato, S. S., Rossi, L. F., Ferrara, S. & & Ratto, G. M. Finding a needle in a haystack: recognition of EGFP tagged nerve cells throughout calcium imaging by ways of two-photon spectral separation. Front. Mol. Neurosci 5, 96 (2012 ).
Kleiner, M. et al. What’s brand-new in psychtoolbox-3. Understanding 36, 1– 16 (2007 ).
Citizen, C. P. et al. High-yield approaches for precise two-alternative visual psychophysics in head-fixed mice. Cell Associate 20, 2513– 2524 (2017 ).
Pachitariu, M. et al. Suite2p beyond 10,000 nerve cells with basic two-photon microscopy. Preprint at https://doi.org/10.1101/061507 (2016 ).
Dipoppa, M. et al. Vision and mobility shape the interactions in between nerve cell enters mouse visual cortex. Nerve Cell 98, 602– 615 (2018 ).
Berens, P. CircStat: a MATLAB tool kit for circular stats. J. Stat. Softw 31, 1– 21 (2009 ).