Spatial connection matches instructions selectivity in visual cortex


  • 1.

    Wertz, A. et al. Single-cell-initiated monosynaptic tracing exposes layer-specific cortical network modules. Science 349 , 70– 74( 2015).

    ADS
    CAS
    PubMed
    Article
    PubMed Central

    Google Scholar

  • 2.

    Ko, H. et al. Practical uniqueness of regional synaptic connections in neocortical networks. Nature 473, 87– 91 (2011 ).

    ADS
    CAS
    PubMed
    PubMed Central
    Article

    Google Scholar

  • 3.

    Iacaruso, M. F., Gasler, I. T. & & Hofer, S. B. Synaptic company of visual area in main visual cortex. Nature 547, 449– 452 (2017 ).

    CAS
    PubMed
    PubMed Central
    Article

    Google Scholar

  • 4.

    Lee, W. C. et al. Anatomy and function of an excitatory network in the visual cortex. Nature 532, 370– 374 (2016 ).

    ADS
    CAS
    PubMed
    PubMed Central
    Article

    Google Scholar

  • 5.

    Wilson, D. E., Whitney, D. E., Scholl, B. & & Fitzpatrick, D. Orientation selectivity and the practical clustering of synaptic inputs in main visual cortex. Nat. Neurosci 19, 1003– 1009 (2016 ).

    CAS
    PubMed
    PubMed Central
    Article

    Google Scholar

  • 6.

    Cossell, L. et al. Practical company of excitatory synaptic strength in main visual cortex. Nature 518, 399– 403 (2015 ).

    ADS
    CAS
    PubMed
    PubMed Central
    Article

    Google Scholar

  • 7.

    Wilson, D. E., Scholl, B. & & Fitzpatrick, D. Differential tuning of excitation and inhibition shapes instructions selectivity in ferret visual cortex. Nature 560, 97– 101 (2018 ).

    ADS
    CAS
    PubMed
    PubMed Central
    Article

    Google Scholar

  • 8.

    Chen, T. W. et al. Ultrasensitive fluorescent proteins for imaging neuronal activity. Nature 499, 295– 300 (2013 ).

    ADS
    CAS
    PubMed
    PubMed Central
    Article

    Google Scholar

  • 9.

    Jia, H., Rochefort, N. L., Chen, X. & & Konnerth, A. Dendritic company of sensory input to cortical nerve cells in vivo. Nature 464, 1307– 1312 (2010 ).

    ADS
    CAS
    PubMed
    Article
    PubMed Central

    Google Scholar

  • 10.

    Packer, A. M. & & Yuste, R. Dense, unspecific connection of neocortical parvalbumin-positive interneurons: a canonical microcircuit for inhibition? J. Neurosci 31, 13260– 13271 (2011 ).

    CAS
    PubMed
    PubMed Central
    Article

    Google Scholar

  • 11.

    Hofer, S. B. et al. Differential connection and action characteristics of excitatory and repressive nerve cells in visual cortex. Nat. Neurosci 14, 1045– 1052 (2011 ).

    CAS
    PubMed
    PubMed Central
    Article

    Google Scholar

  • 12.

    Wickersham, I. R. et al. Monosynaptic limitation of transsynaptic tracing from single, genetically targeted nerve cells. Nerve Cell 53, 639– 647 (2007 ).

    CAS
    PubMed
    PubMed Central
    Article

    Google Scholar

  • 13.

    Barlow, H. B. & & Levick, W. R. The system of directionally selective systems in bunny’s retina. J. Physiol. (Lond.) 178, 477– 504 (1965 ).

    CAS
    Article

    Google Scholar

  • 14.

    Fried, S. I., Münch, T. A. & & Werblin, F. S. Systems and circuitry underlying directional selectivity in the retina. Nature 420, 411– 414 (2002 ).

    ADS
    CAS
    PubMed
    Article
    PubMed Central

    Google Scholar

  • 15.

    Briggman, K. L., Helmstaedter, M. & & Denk, W. Circuitry uniqueness in the direction-selectivity circuit of the retina. Nature 471, 183– 188 (2011 ).

    ADS
    CAS
    PubMed
    Article
    PubMed Central

    Google Scholar

  • 16.

    Vaney, D. I., Sivyer, B. & & Taylor, W. R. Instructions selectivity in the retina: proportion and asymmetry in structure and function. Nat. Rev. Neurosci 13, 194– 208 (2012 ).

    CAS
    PubMed
    Article
    PubMed Central

    Google Scholar

  • 17.

    Kim, J. S. et al. Space-time circuitry uniqueness supports instructions selectivity in the retina. Nature 509, 331– 336 (2014 ).

    CAS
    PubMed
    PubMed Central
    Article

    Google Scholar

  • 18.

    Alonso, J. M. & & Martinez, L. M. Practical connection in between easy cells and complicated cells in feline striate cortex. Nat. Neurosci 1, 395– 403 (1998 ).

    CAS
    PubMed
    Article
    PubMed Central

    Google Scholar

  • 19.

    Priebe, N. J. Systems of orientation selectivity in the main visual cortex. Annu. Rev. Vis. Sci 2, 85– 107 (2016 ).

    PubMed
    Article
    PubMed Central

    Google Scholar

  • 20.

    Isaacson, J. S. & & Scanziani, M. How inhibition forms cortical activity. Nerve Cell 72, 231– 243 (2011 ).

    CAS
    PubMed
    PubMed Central
    Article

    Google Scholar

  • 21.

    Liu, B. H. et al. Broad inhibition hones orientation selectivity by broadening input vibrant variety in mouse easy cells. Nerve Cell 71, 542– 554 (2011 ).

    CAS
    PubMed
    PubMed Central
    Article

    Google Scholar

  • 22.

    Znamenskiy, P. et al. Practical selectivity and particular connection of repressive nerve cells in main visual cortex. Preprint at https://doi.org/10.1101/294835 (2018 ).

  • 23.

    Lee, S. H. et al. Activation of particular interneurons enhances V1 function selectivity and visual understanding. Nature 488, 379– 383 (2012 ).

    ADS
    CAS
    PubMed
    PubMed Central
    Article

    Google Scholar

  • 24.

    Atallah, B. V., Bruns, W., Carandini, M. & & Scanziani, M. Parvalbumin-expressing interneurons linearly change cortical actions to visual stimuli. Nerve Cell 73, 159– 170 (2012 ).

    CAS
    PubMed
    PubMed Central
    Article

    Google Scholar

  • 25.

    Wilson, N. R., Runyan, C. A., Wang, F. L. & & Sur, M. Department and subtraction by unique cortical repressive networks in vivo Nature 488, 343– 348 (2012 ).

    ADS
    CAS
    PubMed
    PubMed Central
    Article

    Google Scholar

  • 26.

    Ma, W. P. et al. Graphes by cortical somatostatin repressive nerve cells– selective however with weak and postponed actions. J. Neurosci 30, 14371– 14379 (2010 ).

    CAS
    PubMed
    PubMed Central
    Article

    Google Scholar

  • 27.

    Monier, C., Chavane, F., Baudot, P., Graham, L. J. & & Frégnac, Y. Orientation and instructions selectivity of synaptic inputs in visual cortical nerve cells: a variety of mixes produces spike tuning. Nerve Cell 37, 663– 680 (2003 ).

    CAS
    PubMed
    Article
    PubMed Central

    Google Scholar

  • 28.

    Livingstone, M. S. Systems of instructions selectivity in macaque V1. Nerve Cell 20, 509– 526 (1998 ).

    CAS
    PubMed
    Article
    PubMed Central

    Google Scholar

  • 29.

    Xu, X. et al. Main visual cortex reveals laminar-specific and well balanced circuit company of excitatory and repressive synaptic connection. J. Physiol. (Lond.) 594, 1891– 1910 (2016 ).

    CAS
    Article

    Google Scholar

  • 30.

    Adesnik, H. & & Scanziani, M. Lateral competitors for cortical area by layer-specific horizontal circuits. Nature 464, 1155– 1160 (2010 ).

    ADS
    CAS
    PubMed
    PubMed Central
    Article

    Google Scholar

  • 31.

    Holmgren, C., Harkany, T., Svennenfors, B. & & Zilberter, Y. Pyramidal cell interaction within regional networks in layer 2/3 of rat neocortex. J. Physiol. (Lond.) 551, 139– 153 (2003 ).

    CAS
    Article

    Google Scholar

  • 32.

    Weiler, S. et al. Relationship in between input connection, morphology and orientation tuning of layer 2/3 pyramidal cells in mouse visual cortex. Preprint at bioRxiv https://doi.org/10.1101/2020.06.03.127191 (2020 ).

  • 33.

    Sun, W., Tan, Z., Mensh, B. D. & & Ji, N. Thalamus offers layer 4 of main visual cortex with orientation- and direction-tuned inputs. Nat. Neurosci 19, 308– 315 (2016 ).

    CAS
    PubMed
    Article

    Google Scholar

  • 34.

    Ringach, D. L. et al. Spatial clustering of tuning in mouse main visual cortex. Nat. Commun 7, 12270 (2016 ).

    ADS
    CAS
    PubMed
    PubMed Central
    Article

    Google Scholar

  • 35.

    Marques, T., Nguyen, J., Fioreze, G. & & Petreanu, L. The practical company of cortical feedback inputs to main visual cortex. Nat. Neurosci 21, 757– 764 (2018 ).

    CAS
    PubMed
    Article
    PubMed Central

    Google Scholar

  • 36.

    Bonin, V., Histed, M. H., Yurgenson, S. & & Reid, R. C. Resident variety and fine-scale company of responsive fields in mouse visual cortex. J. Neurosci 31, 18506– 18521 (2011 ).

    CAS
    PubMed
    PubMed Central
    Article

    Google Scholar

  • 37.

    Garrett, M. E., Nauhaus, I., Marshel, J. H. & & Callaway, E. M. Topography and areal company of mouse visual cortex. J. Neurosci 34, 12587– 12600 (2014 ).

    CAS
    PubMed
    PubMed Central
    Article

    Google Scholar

  • 38.

    Haider, B., Häusser, M. & & Carandini, M. Inhibition controls sensory actions in the awake cortex. Nature 493, 97– 100 (2013 ).

    ADS
    Article
    CAS

    Google Scholar

  • 39.

    Liu, B. H. et al. Stepping in inhibition underlies simple-cell responsive field structure in visual cortex. Nat. Neurosci 13, 89– 96 (2010 ).

    CAS
    PubMed
    Article
    PubMed Central

    Google Scholar

  • 40.

    Li, Y. T., Liu, B. H., Chou, X. L., Zhang, L. I. & & Tao, H. W. Conditioning of instructions selectivity by broadly tuned and spatiotemporally somewhat balanced out inhibition in mouse visual cortex. Cereb. Cortex 25, 2466– 2477 (2015 ).

    PubMed
    Article
    PubMed Central

    Google Scholar

  • 41.

    Lien, A. D. & & Scanziani, M. Tuned thalamic excitation is enhanced by visual cortical circuits. Nat. Neurosci 16, 1315– 1323 (2013 ).

    CAS
    PubMed
    PubMed Central
    Article

    Google Scholar

  • 42.

    Li, Y. T., Ibrahim, L. A., Liu, B. H., Zhang, L. I. & & Tao, H. W. Linear improvement of thalamocortical input by intracortical excitation. Nat. Neurosci 16, 1324– 1330 (2013 ).

    CAS
    PubMed
    PubMed Central
    Article

    Google Scholar

  • 43.

    Hillier, D. et al. Causal proof for retina-dependent and -independent visual movement calculations in mouse cortex. Nat. Neurosci 20, 960– 968 (2017 ).

    CAS
    PubMed
    PubMed Central
    Article

    Google Scholar

  • 44.

    Cruz-Martín, A. et al. A devoted circuit links direction-selective retinal ganglion cells to the main visual cortex. Nature 507, 358– 361 (2014 ).

  • 45.

    Lien, A. D. & & Scanziani, M. Cortical instructions selectivity emerges at merging of thalamic synapses. Nature 558, 80– 86 (2018 ).

    ADS
    CAS
    PubMed
    Article
    PubMed Central

    Google Scholar

  • 46.

    Thiele, A., Distler, C., Korbmacher, H. & & Hoffmann, K. P. Contribution of repressive systems to instructions selectivity and action normalization in macaque middle temporal location. Proc. Natl Acad. Sci. U.S.A. 101, 9810– 9815 (2004 ).

    ADS
    CAS
    PubMed
    Article
    PubMed Central

    Google Scholar

  • 47.

    Madisen, L. et al. Transgenic mice for intersectional targeting of neural sensing units and effectors with high uniqueness and efficiency. Nerve Cell 85, 942– 958 (2015 ).

  • 48.

    Wekselblatt, J. B., Flister, E. D., Piscopo, D. M. & & Niell, C. M. Massive imaging of cortical characteristics throughout sensory understanding and habits. J. Neurophysiol 115, 2852– 2866 (2016 ).

    CAS
    PubMed
    PubMed Central
    Article

    Google Scholar

  • 49.

    Gorski, J. A. et al. Cortical excitatory nerve cells and glia, however not GABAergic nerve cells, are produced in the Emx1-expressing family tree. J. Neurosci 22, 6309– 6314 (2002 ).

    CAS
    PubMed
    PubMed Central
    Article

    Google Scholar

  • 50.

    Mayford, M. et al. Control of memory development through controlled expression of a CaMKII transgene. Science 274, 1678– 1683 (1996 ).

    ADS
    CAS
    PubMed
    Article
    PubMed Central

    Google Scholar

  • 51.

    Peron, S. P., Freeman, J., Iyer, V., Guo, C. & & Svoboda, K. A cellular resolution map of barrel cortex activity throughout tactile habits. Nerve Cell 86, 783– 799 (2015 ).

    CAS
    PubMed
    Article
    PubMed Central

    Google Scholar

  • 52.

    Wickersham, I. R., Finke, S., Conzelmann, K. K. & & Callaway, E. M. Retrograde neuronal tracing with a deletion-mutant rabies infection. Nat. Techniques 4, 47– 49 (2007 ).

    CAS
    PubMed
    Article
    PubMed Central

    Google Scholar

  • 53.

    Marshel, J. H., Mori, T., Nielsen, K. J. & & Callaway, E. M. Targeting single neuronal networks for gene expression and cell labeling in vivo. Nerve Cell 67, 562– 574 (2010 ).

    CAS
    PubMed
    PubMed Central
    Article

    Google Scholar

  • 54.

    Rancz, E. A. et al. Transfection by means of whole-cell recording in vivo: bridging single-cell physiology, genes and connectomics. Nat. Neurosci 14, 527– 532 (2011 ).

    CAS
    PubMed
    PubMed Central
    Article

    Google Scholar

  • 55.

    Osakada, F. et al. New rabies infection variations for tracking and controling activity and gene expression in specified neural circuits. Nerve Cell 71, 617– 631 (2011 ).

    CAS
    PubMed
    PubMed Central
    Article

    Google Scholar

  • 56.

    Goldey, G. J. et al. Detachable cranial windows for long-lasting imaging in awake mice. Nat. Procedures 9, 2515– 2538 (2014 ).

    CAS
    PubMed
    Article
    PubMed Central

    Google Scholar

  • 57.

    Judkewitz, B., Rizzi, M., Kitamura, K. & & Häusser, M. Targeted single-cell electroporation of mammalian nerve cells in vivo. Nat. Procedures 4, 862– 869 (2009 ).

    CAS
    PubMed
    Article
    PubMed Central

    Google Scholar

  • 58.

    Kitamura, K., Judkewitz, B., Kano, M., Denk, W. & & Häusser, M. Targeted patch-clamp recordings and single-cell electroporation of unlabeled nerve cells in vivo. Nat. Techniques 5, 61– 67 (2008 ).

    CAS
    PubMed
    Article
    PubMed Central

    Google Scholar

  • 59.

    Pologruto, T. A., Sabatini, B. L. & & Svoboda, K. ScanImage: versatile software application for running laser scanning microscopic lens. Biomed. Eng. Online 2, 13 (2003 ).

    PubMed
    PubMed Central
    Article

    Google Scholar

  • 60.

    Kim, E. J., Jacobs, M. W., Ito-Cole, T. & & Callaway, E. M. Improved monosynaptic neural circuit tracing utilizing crafted rabies infection glycoproteins. Cell Associate 15, 692– 699 (2016 ).

    CAS
    PubMed
    PubMed Central
    Article

    Google Scholar

  • 61.

    Drobizhev, M., Makarov, N. S., Tillo, S. E., Hughes, T. E. & & Rebane, A. Two-photon absorption homes of fluorescent proteins. Nat. Techniques 8, 393– 399 (2011 ).

    CAS
    PubMed
    PubMed Central
    Article

    Google Scholar

  • 62.

    Brondi, M., Sato, S. S., Rossi, L. F., Ferrara, S. & & Ratto, G. M. Finding a needle in a haystack: recognition of EGFP tagged nerve cells throughout calcium imaging by ways of two-photon spectral separation. Front. Mol. Neurosci 5, 96 (2012 ).

    CAS
    PubMed
    PubMed Central
    Article

    Google Scholar

  • 63.

    Kleiner, M. et al. What’s brand-new in psychtoolbox-3. Understanding 36, 1– 16 (2007 ).


    Google Scholar

  • 64.

    Citizen, C. P. et al. High-yield approaches for precise two-alternative visual psychophysics in head-fixed mice. Cell Associate 20, 2513– 2524 (2017 ).

    CAS
    PubMed
    PubMed Central
    Article

    Google Scholar

  • 65.

    Pachitariu, M. et al. Suite2p beyond 10,000 nerve cells with basic two-photon microscopy. Preprint at https://doi.org/10.1101/061507 (2016 ).

  • 66.

    Dipoppa, M. et al. Vision and mobility shape the interactions in between nerve cell enters mouse visual cortex. Nerve Cell 98, 602– 615 (2018 ).

    CAS
    PubMed
    PubMed Central
    Article

    Google Scholar

  • 67.

    Berens, P. CircStat: a MATLAB tool kit for circular stats. J. Stat. Softw 31, 1– 21 (2009 ).

    Article

    Google Scholar



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *