Single-defect phonons imaged by electron microscopy


  • 1.

    Krumhansl, J. A. Lattice vibrations in solids. J. Appl. Phys 33, 307– 319 (1962 ).

    ADS
    CAS
    MATH

    Google Scholar

  • 2.

    Li, M. D. et al. Nonperturbative quantum nature of the dislocation phonon interaction. Nano Lett 17, 1587– 1594 (2017 ).

    ADS
    CAS

    Google Scholar

  • 3.

    Walker, C. T. & & Pohl, R. O. Phonon scattering by point problems. Phys. Rev 131, 1433– 1442 (1963 ).

    ADS
    CAS

    Google Scholar

  • 4.

    Katcho, N. A., Carrete, J., Li, W. & & Mingo, N. Impact of nitrogen and job problems on the thermal conductivity of diamond: an ab initio Green’s function method. Phys. Rev. B 90, 094117 (2014 ).

    ADS

    Google Scholar

  • 5.

    Klemens, P. G. The scattering of low-frequency lattice waves by fixed flaws. Proc. Phys. Soc. A 68, 1113– 1128 (1955 ).

    ADS
    MATH

    Google Scholar

  • 6.

    Katre, A., Carrete, J., Dongre, B., Madsen, G. K. H. & & Mingo, N. Extremely strong phonon scattering by B alternative in cubic SiC. Phys. Rev. Lett 119, 075902 (2017 ).

    ADS

    Google Scholar

  • 7.

    Singh, B. K., Menon, V. J. & & Sood, K. C. Phonon conductivity of plastically warped crystals: function of stacking faults and dislocations. Phys. Rev. B 74, 184302 (2006 ).

    ADS

    Google Scholar

  • 8.

    Ohashi, K. & & Ohashi, Y. Mean-square displacement of a vibrating dislocation. Phil. Mag. A 38, 187– 204 (1978 ).

    ADS
    CAS

    Google Scholar

  • 9.

    Pernot, G. et al. Exact control of thermal conductivity at the nanoscale through private phonon-scattering barriers. Nat. Mater 9, 491– 495 (2010 ).

    ADS
    CAS

    Google Scholar

  • 10.

    Huberman, S. et al. Observation of 2nd noise in graphite at temperature levels above 100 K. Science 364, 375– 379 (2019 ).

    ADS
    CAS

    Google Scholar

  • 11.

    Lindsay, L., Katre, A., Cepellotti, A. & & Mingo, N. Viewpoint on ab initio phonon thermal transportation. J. Appl. Phys 126, 050902 (2019 ).

    ADS

    Google Scholar

  • 12.

    Arrigoni, M., Carrete, J., Mingo, N. & & Madsen, G. K. H. First-principles quantitative forecast of the lattice thermal conductivity in random semiconductor alloys: the function of force-constant condition. Phys. Rev. B 98, 115205 (2018 ).

    ADS
    CAS

    Google Scholar

  • 13.

    Carrete, J. et al. Phonon transportation throughout crystal-phase user interfaces and twin borders in semiconducting nanowires. Nanoscale 11, 16007– 16016 (2019 ).

    CAS

    Google Scholar

  • 14.

    Sheng, P. Intro to Wave Scattering, Localization and Mesoscopic Phenomena (Springer Series in Products Science Vol. 88, Springer, 2006).

  • 15.

    McCreery, R. L. Raman Spectroscopy for Chemical Analysis (Chemical Analysis: a Series of Essays on Analytical Chemistry and its Applications Vol. 157, Wiley, 2000).

  • 16.

    Bechelany, M., Brioude, A., Cornu, D., Ferro, G. & & Miele, P. A Raman spectroscopy research study of private SiC nanowires. Adv. Funct. Mater 17, 939– 943 (2007 ).

    CAS

    Google Scholar

  • 17.

    Stuart, B. Infrared Spectroscopy: Principles and Applications (Wiley, 2004).

  • 18.

    Chan, K. L. A. & & Kazarian, S. G. New chances in micro- and macro-attenuated overall reflection infrared spectroscopic imaging: spatial resolution and tasting flexibility. Appl. Spectrosc 57, 381– 389 (2003 ).

    ADS
    CAS

    Google Scholar

  • 19.

    Maciel, I. O. et al. Electron and phonon renormalization near charged problems in carbon nanotubes. Nat. Mater 7, 878– 883 (2008 ).

    ADS
    CAS

    Google Scholar

  • 20.

    Burkel, E. Phonon spectroscopy by inelastic x-ray scattering. Rep. Prog. Phys 63, 171– 232 (2000 ).

    ADS
    CAS

    Google Scholar

  • 21.

    Mitchell, P. C. H. Vibrational Spectroscopy with Neutrons: with Applications in Chemistry, Biology, Products Science and Catalysis Vol. 3 (World Scientific, 2005).

  • 22.

    Stipe, B. C., Rezaei, M. A. & & Ho, W. Single-molecule vibrational spectroscopy and microscopy. Science 280, 1732– 1735 (1998 ).

    ADS
    CAS

    Google Scholar

  • 23.

    Altfeder, I. et al. Scanning tunneling microscopy observation of phonon condensate. Sci. Representative 7, 43214 (2017 ).

    ADS
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • 24.

    Krivanek, O. L. et al. Vibrational spectroscopy in the electron microscopic lense. Nature 514, 209– 212 (2014 ).

    ADS
    CAS

    Google Scholar

  • 25.

    Hachtel, J. A. et al. Recognition of site-specific isotopic labels by vibrational spectroscopy in the electron microscopic lense. Science 363, 525– 528 (2019 ).

    ADS
    CAS

    Google Scholar

  • 26.

    Hage, F., Kepaptsoglou, D., Ramasse, Q. & & Allen, L. Phonon spectroscopy at atomic resolution. Phys. Rev. Lett 122, 016103 (2019 ).

    ADS
    CAS

    Google Scholar

  • 27.

    Lagos, M. J., Trügler, A., Hohenester, U. & & Batson, P. E. Mapping vibrational surface area and bulk modes in a single nanocube. Nature 543, 529– 532 (2017 ).

    ADS
    CAS

    Google Scholar

  • 28.

    Govyadinov, A. A. et al. Penetrating low-energy hyperbolic polaritons in van der Waals crystals with an electron microscopic lense. Nat. Commun 8, 95 (2017 ).

    ADS
    PubMed
    PubMed Central

    Google Scholar

  • 29.

    Venkatraman, K., Rez, P., March, K. & & Crozier, P. A. The impact of surface areas and user interfaces on high spatial resolution vibrational EELS from SiO 2 Microscopy 67, i14– i23 (2018 ).

    CAS

    Google Scholar

  • 30.

    Hage, F. S. et al. Nanoscale momentum-resolved vibrational spectroscopy. Sci. Adv 4, eaar7495 (2018 ).

    ADS
    PubMed
    PubMed Central

    Google Scholar

  • 31.

    Rez, P. et al. Damage-free vibrational spectroscopy of biological products in the electron microscopic lense. Nat. Commun 7, 10945 (2016 ); erratum 7, 11592 (2016 ).

    ADS
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • 32.

    Dwyer, C. et al. Electron-beam mapping of vibrational modes with nanometer spatial resolution. Phys. Rev. Lett 117, 256101 (2016 ).

    ADS
    CAS

    Google Scholar

  • 33.

    Lindefelt, U., Iwata, H., Öberg, S. & & Briddon, P. R. Stacking faults in 3C-, 4H-, and 6H-SiC polytypes examined by an ab initio supercell approach. Phys. Rev. B 67, 155204 (2003 ).

    ADS

    Google Scholar

  • 34.

    Goela, J. S., Brese, N. E., Burns, L. E. & & Pickering, M. A. in High Thermal Conductivity Products (eds Shindé, S. L. & & Goela, J. S.) 167– 198 (Springer, 2006).

  • 35.

    Yamasaki, J., Inamoto, S., Nomura, Y., Tamaki, H. & & Tanaka, N. Atomic structure analysis of stacking faults and misfit dislocations at 3C-SiC/Si( 001) user interfaces by aberration-corrected transmission electron microscopy. J. Phys. D 45, 494002 (2012 ).


    Google Scholar

  • 36.

    Stevens, R. Defects in silicon carbide. J. Mater. Sci 7, 517– 521 (1972 ).

    ADS
    CAS

    Google Scholar

  • 37.

    Williams, D. B. & & Carter, C. B. Transmission Electron Microscopy: a Book for Products Science Vol. 2 (Springer Science & & Service Media, 2009).

  • 38.

    Nienhaus, H., Kampen, T. U. & & Mönch, W. Phonons in 3C-SiC, 4H-SiC, and 6H-SiC. Browse. Sci 324, L328– L332 (1995 ).

    ADS
    CAS

    Google Scholar

  • 39.

    Serrano, J. et al. Decision of the phonon dispersion of zinc blende (3C) silicon carbide by inelastic X-ray scattering. Appl. Phys. Lett 80, 4360– 4362 (2002 ).

    ADS
    CAS

    Google Scholar

  • 40.

    Strauch, D. et al. Phonons in SiC from INS, IXS, and ab-initio computations. Mater. Sci. Online Forum 527– 529, 689– 694 (2006 ).


    Google Scholar

  • 41.

    Yan, X. et al. Unforeseen strong thermally caused phonon energy shift for mapping regional temperature level. Nano Lett 19, 7494– 7502 (2019 ).

    ADS
    CAS

    Google Scholar

  • 42.

    Lourenço-Martins, H. & & Kociak, M. Vibrational surface area electron-energy-loss spectroscopy probes restricted surface-phonon modes. Phys. Rev. X 7, 041059 (2017 ).


    Google Scholar

  • 43.

    Venkatraman, K., Levin, B. D. A., March, K., Rez, P. & & Crozier, P. A. Vibrational spectroscopy at atomic resolution with electron effect scattering. Nat. Phys 15, 1237– 1241 (2019 ).

    CAS

    Google Scholar

  • 44.

    Senga, R. et al. Position and momentum mapping of vibrations in graphene nanostructures. Nature 573, 247– 250 (2019 ).

    ADS
    CAS

    Google Scholar

  • 45.

    Koch, C. T. Decision of Core Structure Periodicity and Point Problem Density along Dislocations DPhil thesis, Arizona State University (2002 ).

  • 46.

    Kresse, G. & & Hafner, J. Ab initio molecular characteristics for liquid metals. Phys. Rev. B 47, 558– 561 (1993 ).

    ADS
    CAS

    Google Scholar

  • 47.

    Kresse, G. & & Hafner, J. Ab initio molecular-dynamics simulation of the liquid-metal amorphous-semiconductor shift in germanium. Phys. Rev. B 49, 14251– 14269 (1994 ).

    ADS
    CAS

    Google Scholar

  • 48.

    Kresse, G. & & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave approach. Phys. Rev. B 59, 1758– 1775 (1999 ).

    ADS
    CAS

    Google Scholar

  • 49.

    Monkhorst, H. J. & & Load, J. D. Unique points for Brillouin-zone combinations. Phys. Rev. B 13, 5188– 5192 (1976 ).

    ADS
    MathSciNet

    Google Scholar

  • 50.

    Togo, A., Oba, F. & & Tanaka, I. First-principles computations of the ferroelastic shift in between rutile-type and CaCl 2– type SiO 2 at high pressures. Phys. Rev. B 78, 134106 (2008 ).

    ADS

    Google Scholar

  • 51.

    Gonze, X. & & Lee, C. Dynamical matrices, Born efficient charges, dielectric permittivity tensors, and interatomic force constants from density-functional perturbation theory. Phys. Rev. B 55, 10355– 10368 (1997 ).

    ADS
    CAS

    Google Scholar

  • 52.

    Giannozzi, P., de Gironcoli, S., Pavone, P. & & Baroni, S. Ab initio computation of phonon dispersions in semiconductors. Phys. Rev. B 43, 7231– 7242 (1991 ).

    ADS
    CAS

    Google Scholar

  • 53.

    Henry, C. H. & & Hopfield, J. J. Raman scattering by polaritons. Phys. Rev. Lett 15, 964– 966 (1965 ).

    ADS
    CAS

    Google Scholar

  • 54.

    García de Abajo, F. L. Optical excitations in electron microscopy. Rev. Mod. Phys 82, 209– 275 (2010 ).

    ADS

    Google Scholar

  • 55.

    Wang, T., Carrete, J., van Roekeghem, A., Mingo, N. & & Madsen, G. K. H. Ab initio phonon scattering by dislocations. Phys. Rev. B 95, 245304 (2017 ).

    ADS

    Google Scholar



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *