IspH inhibitors eliminate Gram-negative germs and activate immune clearance


  • 1.

    Odom, A. R. 5 concerns about non-mevalonate isoprenoid biosynthesis. PLoS Pathog 7, e1002323 (2011 ).

    CAS
    PubMed
    PubMed Central
    Article

    Google Scholar

  • 2.

    Jomaa, H. et al. Inhibitors of the nonmevalonate path of isoprenoid biosynthesis as antimalarial drugs. Science 285, 1573– 1576 (1999 ).

    CAS
    PubMed
    Article
    PubMed Central

    Google Scholar

  • 3.

    McAteer, S., Coulson, A., McLennan, N. & & Masters, M. The lytB gene of Escherichia coli is important and defines an item required for isoprenoid biosynthesis. J. Bacteriol 183, 7403– 7407 (2001 ).

    CAS
    PubMed
    PubMed Central
    Article

    Google Scholar

  • 4.

    Rhodes, D. A. et al. Activation of human γδ T cells by cytosolic interactions of BTN3A1 with soluble phosphoantigens and the cytoskeletal adaptor periplakin. J. Immunol 194, 2390– 2398 (2015 ).

    CAS
    PubMed
    PubMed Central
    Article

    Google Scholar

  • 5.

    Chien, Y. H., Meyer, C. & & Bonneville, M. γδ T cells: very first line of defense and beyond. Annu. Rev. Immunol 32, 121– 155 (2014 ).

    CAS
    PubMed
    Article
    PubMed Central

    Google Scholar

  • 6.

    Chen, Z. W. Multifunctional immune actions of HMBPP-specific Vγ2Vδ2 T cells in M. tuberculosis and other infections. Cell. Mol. Immunol 10, 58– 64 (2013 ).

    PubMed
    Article
    CAS
    PubMed Central

    Google Scholar

  • 7.

    Alberts, B. et al. Molecular Biology of the Cell fourth edn (Garland Science, 2002).

  • 8.

    Lieberman, J. in Basic Immunology 7th edn (ed. Paul, W. E.) Ch. 37 (Lippincott, Williams & & Wilkins, 2012).

  • 9.

    Magill, S. S. et al. Multistate point-prevalence study of health care-associated infections. N. Engl. J. Medication 370, 1198– 1208 (2014 ).

    CAS
    PubMed
    PubMed Central
    Article

    Google Scholar

  • 10.

    WHO. Tuberculosis https://www.who.int/en/news-room/fact-sheets/detail/tuberculosis (World Health Company, 2020).

  • 11.

    WHO. Artemisinin resistance and artemisinin-based mix treatment effectiveness https://www.who.int/docs/default-source/documents/publications/gmp/who-cds-gmp-2019-17-eng.pdf?ua=1 (World Health Company, 2019).

  • 12.

    Wright, G. D. Bacterial resistance to prescription antibiotics: enzymatic deterioration and adjustment. Adv. Drug Deliv. Rev 57, 1451– 1470 (2005 ).

    CAS
    PubMed
    Article
    PubMed Central

    Google Scholar

  • 13.

    Li, X. Z., Plésiat, P. & & Nikaido, H. The obstacle of efflux-mediated antibiotic resistance in Gram-negative germs. Clin. Microbiol. Rev 28, 337– 418 (2015 ).

    PubMed
    PubMed Central
    Article

    Google Scholar

  • 14.

    Wilson, D. N. Ribosome-targeting prescription antibiotics and systems of bacterial resistance. Nat. Rev. Microbiol 12, 35– 48 (2014 ).

    CAS
    PubMed
    Article
    PubMed Central

    Google Scholar

  • 15.

    Dotiwala, F. et al. Granzyme B interferes with main metabolic process and protein synthesis in germs to promote an immune cell death program. Cell 171, 1125– 1137. e11 (2017 ).

    CAS
    PubMed
    PubMed Central
    Article

    Google Scholar

  • 16.

    Walch, M. et al. Cytotoxic cells eliminate intracellular germs through granulysin-mediated shipment of granzymes. Cell 157, 1309– 1323 (2014 ).

    CAS
    PubMed
    PubMed Central
    Article

    Google Scholar

  • 17.

    Dotiwala, F. et al. Killer lymphocytes utilize granulysin, perforin and granzymes to eliminate intracellular parasites. Nat. Med 22, 210– 216 (2016 ).

    CAS
    PubMed
    PubMed Central
    Article

    Google Scholar

  • 18.

    Finlay, B. B. & & McFadden, G. Anti-immunology: evasion of the host body immune system by bacterial and viral pathogens. Cell 124, 767– 782 (2006 ).

    CAS
    PubMed
    Article
    PubMed Central

    Google Scholar

  • 19.

    Yang, J. H. et al. Antibiotic-induced modifications to the host metabolic environment prevent drug effectiveness and modify immune function. Cell Host Microorganism 22, 757– 765. e3 (2017 ).

    CAS
    PubMed
    PubMed Central
    Article

    Google Scholar

  • 20.

    Chiang, C. Y. et al. Reducing the effect of anti-bacterial drug resistance through host-directed treatments: present development, outlook, and obstacles. MBio 9, e01932-17 (2018 ).

    CAS
    PubMed
    PubMed Central
    Article

    Google Scholar

  • 21.

    Oldfield, E. & & Feng, X. Resistance-resistant prescription antibiotics. Trends Pharmacol. Sci 35, 664– 674 (2014 ).

    CAS
    PubMed
    PubMed Central
    Article

    Google Scholar

  • 22.

    Marakasova, E. S. et al. Prenylation: from germs to eukaryotes. Mol. Biol. (Mosk.) 47, 717– 730 (2013 ).

    CAS
    Article

    Google Scholar

  • 23.

    Workalemahu, G. et al. Metabolic engineering of Salmonella vaccine germs to increase human Vγ2Vδ2 T cell resistance. J. Immunol 193, 708– 721 (2014 ).

    CAS
    PubMed
    PubMed Central
    Article

    Google Scholar

  • 24.

    Dieli, F. et al. Granulysin-dependent killing of intracellular and extracellular Mycobacterium tuberculosis by Vγ9/ Vδ2 T lymphocytes.(* )J. Infect. Dis . 184, 1082– 1085 (2001 ).

    CAS
    PubMed
    Article

    Google Scholar
    25.

  • Wolff, M. et al. Isoprenoid biosynthesis through the methylerythritol phosphate path: the (

    E) -4- hydroxy-3-methylbut-2-enyl diphosphate reductase (LytB/IspH) from Escherichia coli is a protein. [4Fe-4S] FEBS Lett 541, 115– 120 (2003 ).

    CAS
    PubMed
    Article
    PubMed Central

    Google Scholar
    26.

  • Rohdich, F. et al. The deoxyxylulose phosphate path of isoprenoid biosynthesis: research studies on the systems of the responses catalyzed by IspG and IspH protein.

    Proc. Natl Acad. Sci. U.S.A. 100 , 1586– 1591 (2003 ).

    ADS
    CAS
    PubMed
    Article
    PubMed Central

    Google Scholar
    27.

  • Xiao, Y., Chu, L., Sanakis, Y. & & Liu, P. Reviewing the IspH catalytic system in the deoxyxylulose phosphate path: attaining high activity.

    J. Am. Chem. Soc 131, 9931– 9933 (2009 ).

    CAS
    PubMed
    Article
    PubMed Central

    Google Scholar
    28.

  • Gräwert, T. et al. Penetrating the response system of IspH protein by X-ray structure analysis.

    Proc. Natl Acad. Sci. U.S.A. 107 , 1077– 1081 (2010 ).

    ADS
    PubMed
    Article
    CAS
    PubMed Central

    Google Scholar
    29.

  • Nazarov, P. A. et al. Mitochondria-targeted anti-oxidants as extremely efficient prescription antibiotics.

    Sci. Representative . 7, 1394 (2017 ).

    ADS
    PubMed
    PubMed Central
    Article
    CAS

    Google Scholar
    30.

  • Ortmann, R. et al. Acyloxyalkyl ester prodrugs of FR900098 with enhanced in vivo anti-malarial activity.

    Bioorg. Medication. Chem. Lett 13, 2163– 2166 (2003 ).

    CAS
    PubMed
    Article
    PubMed Central

    Google Scholar
    31.

  • Søballe, B. & & Poole, R. K. Microbial ubiquinones: numerous functions in respiration, gene policy and oxidative tension management.

    Microbiology 145 , 1817– 1830 (1999 ).

    PubMed
    Article
    PubMed Central

    Google Scholar
    32.

  • Trnka, J., Elkalaf, M. & & Anděl, M. Lipophilic triphenylphosphonium cations prevent mitochondrial electron transportation chain and cause mitochondrial proton leakage.

    PLoS ONE 10 , e0121837 (2015 ).

    PubMed
    PubMed Central
    Article
    CAS

    Google Scholar
    33.

  • Wingrove, D. E. & & Gunter, T. E. Kinetics of mitochondrial calcium transportation. II. A kinetic description of the sodium-dependent calcium efflux system of liver mitochondria and inhibition by ruthenium red and by tetraphenylphosphonium.

    J. Biol. Chem 261, 15166– 15171 (1986 ).

    CAS
    PubMed
    PubMed Central

    Google Scholar
    34.

  • Schwartz, A. S., Yu, J., Gardenour, K. R., Finley, R. L., Jr & & Ideker, T. Cost-efficient methods for finishing the interactome.

    Nat. Approaches 6 , 55– 61 (2009 ).

    CAS
    PubMed
    Article
    PubMed Central

    Google Scholar
    35.

  • Wang, H. et al. Butyrophilin 3A1 plays a vital function in prenyl pyrophosphate stimulation of human Vγ2Vδ2 T cells.

    J. Immunol 191, 1029– 1042 (2013 ).

    CAS
    PubMed
    Article
    PubMed Central

    Google Scholar
    36.

  • Sandstrom, A. et al. The intracellular B30.2 domain of butyrophilin 3A1 binds phosphoantigens to moderate activation of human Vγ9Vδ2 T cells.

    Resistance 40 , 490– 500 (2014 ).

    CAS
    PubMed
    PubMed Central
    Article

    Google Scholar
    37.

  • Rigau, M. et al. Butyrophilin 2A1 is important for phosphoantigen reactivity by γδ T cells.

    Science 367 , eaay5516 (2020 ).

    CAS
    PubMed
    Article
    PubMed Central

    Google Scholar
    38.

  • Karunakaran, M. M. et al. Butyrophilin-2A1 straight binds germline-encoded areas of the Vγ9Vδ2 TCR and is important for phosphoantigen noticing.(* )Resistance

    52, 487– 498. e6 (2020 ).

    CAS
    PubMed
    PubMed Central
    Article 39.
    Google Scholar
    Wei, H. et al. Meaning of APC discussion of phosphoantigen (

  • E

    ) -4- hydroxy-3-methyl-but-2-enyl pyrophosphate to Vγ2Vδ2 TCR. J. Immunol 181, 4798– 4806 (2008 ).

    CAS
    PubMed
    PubMed Central
    Article 40.
    Google Scholar
    Mogues, T., Goodrich, M. E., Ryan, L., LaCourse, R. & & North, R. J. The relative significance of T cell subsets in resistance and immunopathology of air-borne

  • Mycobacterium tuberculosis

    infection in mice. J. Exp. Med 193, 271– 280 (2001 ).

    CAS
    PubMed
    PubMed Central
    Article 41.
    Google Scholar
    Abagyan, R., Totrov, M. & & Kuznetsov, D. ICM– a brand-new approach for protein modeling and style – applications to docking and structure forecast from the distorted native conformation.

  • J. Comput. Chem

    15, 488– 506 (1994 ).

    CAS
    Article 42.
    Google Scholar
    Abagyan, R. & & Totrov, M. Biased possibility Monte Carlo conformational searches and electrostatic estimations for peptides and proteins.

  • J. Mol. Biol

    235, 983– 1002 (1994 ).

    CAS
    PubMed
    Article 43.
    Google Scholar
    Lam, P. C., Abagyan, R. & & Totrov, M. Hybrid receptor structure/ligand-based docking and activity forecast in ICM: advancement and assessment in D3R Grand Obstacle 3.

  • J. Comput. Assisted Mol. Des

    33, 35– 46 (2019 ).

    ADS
    CAS
    PubMed
    Article 44.
    Google Scholar
    Lam, P. C., Abagyan, R. & & Totrov, M. Ligand-biased ensemble receptor docking (LigBEnD): a hybrid ligand/receptor structure-based technique.

  • J. Comput. Assisted Mol. Des

    32, 187– 198 (2018 ).

    ADS
    CAS
    PubMed
    Article 45.
    Google Scholar
    Totrov, M. Atomic residential or commercial property fields: generalized 3D pharmacophoric capacity for automatic ligand superposition, pharmacophore elucidation and 3D QSAR.

  • Chem. Biol. Drug Des

    71, 15– 27 (2008 ).

    CAS
    PubMed
    Article 46.
    Google Scholar
    Chen, Q. & & Chen, J. Seclusion of CD34

  • +

    cells from human fetal liver and cable blood. Bio Protoc 3, e991 (2013 ).
    47.


    Google Scholar
    Somasundaram, R. et al. Tumor-associated B-cells cause growth heterogeneity and treatment resistance.(* )Nat. Commun

  • 8, 607 (2017 ).

    ADS
    PubMed
    PubMed Central
    Article 48.CAS Period, I. et al. Insights into the binding of pyridines to the iron– sulfur enzyme IspH.
    Google Scholar
    J. Am. Chem. Soc

  • 136, 7926– 7932 (2014 ).

    CAS
    PubMed
    PubMed Central 49.Article Braet, F., De Zanger, R. & & Wisse, E. Drying cells for SEM, AFM and TEM by hexamethyldisilazane: a research study on hepatic endothelial cells.
    Google Scholar
    J. Microsc

  • 186, 84– 87 (1997 ).

    CAS
    PubMed
    Article 50.PubMed Central Cox, J. et al. Precise proteome-wide label-free metrology by postponed normalization and optimum peptide ratio extraction, described MaxLFQ.
    Google Scholar
    Mol. Cell Proteomics

  • 13

    , 2513– 2526 (2014 ).

    CAS
    PubMed
    PubMed Central 51.Article Floor, J. D. & & Tibshirani, R. Statistical significance for genomewide research studies.
    Google Scholar
    Proc. Natl Acad. Sci. U.S.A.

  • 100

    , 9440– 9445 (2003 ).

    ADS
    MathSciNet
    CAS
    PubMed
    MATH
    Article 52.PubMed Central Oliveros, J. C.
    Google Scholar
    Venny

  • v. 2.1 (BioinfoGP, 2007).

  • Leave a Reply

    Your email address will not be published. Required fields are marked *