Developing schema representations in orbitofrontal ensembles throughout finding out
Bartlett, F. C. Keeping In Mind: A Research Study in Speculative and Social Psychology (Cambridge Univ. Press, 1932).
Piaget, J. Langage et Pensée Chez L’Enfant (Delachaux et Niestlé, 1923).
van Kesteren, M. T., Ruiter, D. J., Fernández, G. & & Henson, R. N. How schema and novelty enhance memory development. Trends Neurosci 35, 211– 219 (2012 ).
Gilboa, A. & & Marlatte, H. Neurobiology of schemas and schema-mediated memory. Trends Cogn. Sci 21, 618– 631 (2017 ).
Tse, D. et al. Schemas and memory debt consolidation. Science 316, 76– 82 (2007 ).
Zhou, J. et al. Rat orbitofrontal ensemble activity consists of multiplexed however dissociable representations of worth and job structure in a smell series job. Curr. Biol 29, 897– 907. e3 (2019 ).
Zhou, J. et al. Complementary job structure representations in hippocampus and orbitofrontal cortex throughout a smell series job. Curr. Biol 29, 3402– 3409. e3 (2019 ).
Gallego, J. A., Perich, M. G., Chowdhury, R. H., Solla, S. A. & & Miller, L. E. Long-lasting stability of cortical population characteristics underlying constant habits. Nat. Neurosci 23, 260– 270 (2020 ).
Stringer, C. et al. Spontaneous habits drive multidimensional, brainwide activity. Science 364, 255 (2019 ).
Baram, A. B., Muller, T. H., Nili, H., Garvert, M. & & Behrens, T. E. Entorhinal and ventromedial prefrontal cortices abstract and generalise the structure of support knowing issues. Preprint at https://doi.org/10.1101/827253 (2020 ).
McKenzie, S. et al. Hippocampal representation of associated and opposing memories establish within unique, hierarchically arranged neural schemas. Nerve Cell 83, 202– 215 (2014 ).
McKenzie, S., Robinson, N. T., Herrera, L., Churchill, J. C. & & Eichenbaum, H. Knowing triggers reorganization of neuronal shooting patterns to represent associated experiences within a hippocampal schema. J. Neurosci 33, 10243– 10256 (2013 ).
Morrissey, M. D., Insel, N. & & Takehara-Nishiuchi, K. Generalizable understanding outweighs incidental information in prefrontal ensemble code with time. eLife 6 , e22177 (2017 ).
Rubin, A. et al. Exposing neural correlates of habits without behavioral measurements. Nat. Commun 10, 4745 (2019 ).
Mack, M. L., Preston, A. R. & & Love, B. C. Ventromedial prefrontal cortex compression throughout idea knowing. Nat. Commun 11, 46 (2020 ).
Farovik, A. et al. Orbitofrontal cortex encodes memories within value-based schemas and represents contexts that assist memory retrieval. J. Neurosci 35, 8333– 8344 (2015 ).
Jones, B. & & Mishkin, M. Limbic sores and the issue of stimulus– support associations. Exp. Neurol 36, 362– 377 (1972 ).
Jones, J. L. et al. Orbitofrontal cortex supports habits and knowing utilizing presumed however not cached worths. Science 338, 953– 956 (2012 ).
Wimmer, G. E. & & Shohamy, D. Choice by association: how memory systems in the hippocampus predisposition choices. Science 338, 270– 273 (2012 ).
Wilson, R. C., Takahashi, Y. K., Schoenbaum, G. & & Niv, Y. Orbitofrontal cortex as a cognitive map of job area. Nerve Cell 81, 267– 279 (2014 ).
Constantinescu, A. O., O’Reilly, J. X. & & Behrens, T. E. J. Organizing conceptual understanding in people with a gridlike code. Science 352, 1464– 1468 (2016 ).
Schuck, N. W., Cai, M. B., Wilson, R. C. & & Niv, Y. Human being orbitofrontal cortex represents a cognitive map of state area. Nerve Cell 91, 1402– 1412 (2016 ).
Garvert, M. M., Dolan, R. J. & & Behrens, T. E. A map of abstract relational understanding in the human hippocampal-entorhinal cortex. eLife 6, e17086 (2017 ).
Behrens, T. E. J. et al. What is a cognitive map? Oganizing understanding for versatile habits. Nerve Cell 100, 490– 509 (2018 ).
Gardner, M. P. H. & & Schoenbaum, G. The orbitofrontal cartographer. Preprint at https://doi.org/10.31234/osf.io/4mrxy (2020 ).
Gallagher, M., McMahan, R. W. & & Schoenbaum, G. Orbitofrontal cortex and representation of reward worth in associative knowing. J. Neurosci 19, 6610– 6614 (1999 ).
Takahashi, Y. K. et al. Neural quotes of envisioned results in the orbitofrontal cortex drive habits and knowing. Nerve Cell 80, 507– 518 (2013 ).
Stalnaker, T. A., Cooch, N. K. & & Schoenbaum, G. What the orbitofrontal cortex does refrain from doing. Nat. Neurosci 18, 620– 627 (2015 ).
Schoenbaum, G., Nugent, S. L., Saddoris, M. P. & & Setlow, B. Orbitofrontal sores in rats hinder turnaround however not acquisition of go, no-go smell discriminations. Neuroreport 13, 885– 890 (2002 ).
Gardner, M. P. H., Conroy, J. S., Shaham, M. H., Styer, C. V. & & Schoenbaum, G. Lateral orbitofrontal inactivation dissociates devaluation-sensitive habits and financial option. Nerve Cell 96, 1192– 1203. e4 (2017 ).
Hirokawa, J., Vaughan, A., Masset, P., Ott, T. & & Kepecs, A. Frontal cortex nerve cell types unconditionally encode single choice variables. Nature 576, 446– 451 (2019 ).
Nogueira, R. et al. Lateral orbitofrontal cortex prepares for options and incorporates prior with existing details. Nat. Commun 8, 14823 (2017 ).
Young, J. J. & & Shapiro, M. L. Dynamic coding of goal-directed courses by orbital prefrontal cortex. J. Neurosci 31, 5989– 6000 (2011 ).
Calhoun, V. D., Adali, T., Pearlson, G. D. & & Pekar, J. J. A technique for making group reasonings from practical MRI information utilizing independent element analysis. Hum. Brain Mapp 14, 140– 151 (2001 ).
Hyvärinen, A. & & Oja, E. Independent element analysis: algorithms and applications. Neural Netw 13, 411– 430 (2000 ).
McKeown, M. J., Hansen, L. K. & & Sejnowsk, T. J. Independent element analysis of practical MRI: what is signal and what is sound? Curr. Opin. Neurobiol 13, 620– 629 (2003 ).
Wang, J. & & Chang, C.-I. Independent element analysis-based dimensionality decrease with applications in hyperspectral image analysis. IEEE Trans. Geosci. Remote Sens 44, 1586– 1600 (2006 ).
Bell, A. J. & & Sejnowski, T. J. An information-maximization method to blind separation and blind deconvolution. Neural Comput 7, 1129– 1159 (1995 ).
Long, Q. et al. Constant run choice for independent element analysis: application to FMRI analysis. In IEEE International Conference on Acoustics, Speech and Signal Processing 2581– 2585 (2018 ).
Akhonda, M. A. B. S., Levin-Schwartz, Y., Bhinge, S., Calhoun, V. D. & & Adali, T. Successive self-reliance and connection change for multimodal blend: application to EEG and FMRI Data. In IEEE International Conference on Acoustics, Speech and Signal Processing 2311– 2315 (2018 ).
Jia, C. et al. C– ICT for discovery of several associations in multimodal imaging information: application to blend of fMRI and DTI information. In 53rd Yearly Conference on Info Sciences and Systems 1– 5 (2019 ).
Chang, C.-C. & & Lin, C.-J. LIBSVM: A library for assistance vector makers. ACM Trans. Intell. Syst. Technol 2, 27 (2011 ).
Zhang, Y. et al. Object deciphering with attention in inferior temporal cortex. Proc. Natl Acad. Sci. U.S.A. 108, 8850– 8855 (2011 ).