Developing schema representations in orbitofrontal ensembles throughout finding out


  • 1.

    Bartlett, F. C. Keeping In Mind: A Research Study in Speculative and Social Psychology (Cambridge Univ. Press, 1932).

  • 2.

    Piaget, J. Langage et Pensée Chez L’Enfant (Delachaux et Niestlé, 1923).

  • 3.

    van Kesteren, M. T., Ruiter, D. J., Fernández, G. & & Henson, R. N. How schema and novelty enhance memory development. Trends Neurosci 35, 211– 219 (2012 ).

    Article

    Google Scholar

  • 4.

    Gilboa, A. & & Marlatte, H. Neurobiology of schemas and schema-mediated memory. Trends Cogn. Sci 21, 618– 631 (2017 ).

    Article

    Google Scholar

  • 5.

    Tse, D. et al. Schemas and memory debt consolidation. Science 316, 76– 82 (2007 ).

    ADS
    CAS
    Article

    Google Scholar

  • 6.

    Zhou, J. et al. Rat orbitofrontal ensemble activity consists of multiplexed however dissociable representations of worth and job structure in a smell series job. Curr. Biol 29, 897– 907. e3 (2019 ).

    CAS
    Article

    Google Scholar

  • 7.

    Zhou, J. et al. Complementary job structure representations in hippocampus and orbitofrontal cortex throughout a smell series job. Curr. Biol 29, 3402– 3409. e3 (2019 ).

    CAS
    Article

    Google Scholar

  • 8.

    Gallego, J. A., Perich, M. G., Chowdhury, R. H., Solla, S. A. & & Miller, L. E. Long-lasting stability of cortical population characteristics underlying constant habits. Nat. Neurosci 23, 260– 270 (2020 ).

    CAS
    Article

    Google Scholar

  • 9.

    Stringer, C. et al. Spontaneous habits drive multidimensional, brainwide activity. Science 364, 255 (2019 ).

    ADS
    Article

    Google Scholar

  • 10.

    Baram, A. B., Muller, T. H., Nili, H., Garvert, M. & & Behrens, T. E. Entorhinal and ventromedial prefrontal cortices abstract and generalise the structure of support knowing issues. Preprint at https://doi.org/10.1101/827253 (2020 ).

  • 11.

    McKenzie, S. et al. Hippocampal representation of associated and opposing memories establish within unique, hierarchically arranged neural schemas. Nerve Cell 83, 202– 215 (2014 ).

    CAS
    Article

    Google Scholar

  • 12.

    McKenzie, S., Robinson, N. T., Herrera, L., Churchill, J. C. & & Eichenbaum, H. Knowing triggers reorganization of neuronal shooting patterns to represent associated experiences within a hippocampal schema. J. Neurosci 33, 10243– 10256 (2013 ).

    CAS
    Article

    Google Scholar

  • 13.

    Morrissey, M. D., Insel, N. & & Takehara-Nishiuchi, K. Generalizable understanding outweighs incidental information in prefrontal ensemble code with time. eLife 6 , e22177 (2017 ).

    Article

    Google Scholar

  • 14.

    Rubin, A. et al. Exposing neural correlates of habits without behavioral measurements. Nat. Commun 10, 4745 (2019 ).

    ADS
    Article

    Google Scholar

  • 15.

    Mack, M. L., Preston, A. R. & & Love, B. C. Ventromedial prefrontal cortex compression throughout idea knowing. Nat. Commun 11, 46 (2020 ).

    ADS
    CAS
    Article

    Google Scholar

  • 16.

    Farovik, A. et al. Orbitofrontal cortex encodes memories within value-based schemas and represents contexts that assist memory retrieval. J. Neurosci 35, 8333– 8344 (2015 ).

    CAS
    Article

    Google Scholar

  • 17.

    Jones, B. & & Mishkin, M. Limbic sores and the issue of stimulus– support associations. Exp. Neurol 36, 362– 377 (1972 ).

    CAS
    Article

    Google Scholar

  • 18.

    Jones, J. L. et al. Orbitofrontal cortex supports habits and knowing utilizing presumed however not cached worths. Science 338, 953– 956 (2012 ).

    ADS
    CAS
    Article

    Google Scholar

  • 19.

    Wimmer, G. E. & & Shohamy, D. Choice by association: how memory systems in the hippocampus predisposition choices. Science 338, 270– 273 (2012 ).

    ADS
    CAS
    Article

    Google Scholar

  • 20.

    Wilson, R. C., Takahashi, Y. K., Schoenbaum, G. & & Niv, Y. Orbitofrontal cortex as a cognitive map of job area. Nerve Cell 81, 267– 279 (2014 ).

    CAS
    Article

    Google Scholar

  • 21.

    Constantinescu, A. O., O’Reilly, J. X. & & Behrens, T. E. J. Organizing conceptual understanding in people with a gridlike code. Science 352, 1464– 1468 (2016 ).

    ADS
    CAS
    Article

    Google Scholar

  • 22.

    Schuck, N. W., Cai, M. B., Wilson, R. C. & & Niv, Y. Human being orbitofrontal cortex represents a cognitive map of state area. Nerve Cell 91, 1402– 1412 (2016 ).

    CAS
    Article

    Google Scholar

  • 23.

    Garvert, M. M., Dolan, R. J. & & Behrens, T. E. A map of abstract relational understanding in the human hippocampal-entorhinal cortex. eLife 6, e17086 (2017 ).

    Article

    Google Scholar

  • 24.

    Behrens, T. E. J. et al. What is a cognitive map? Oganizing understanding for versatile habits. Nerve Cell 100, 490– 509 (2018 ).

    CAS
    Article

    Google Scholar

  • 25.

    Gardner, M. P. H. & & Schoenbaum, G. The orbitofrontal cartographer. Preprint at https://doi.org/10.31234/osf.io/4mrxy (2020 ).

  • 26.

    Gallagher, M., McMahan, R. W. & & Schoenbaum, G. Orbitofrontal cortex and representation of reward worth in associative knowing. J. Neurosci 19, 6610– 6614 (1999 ).

    CAS
    Article

    Google Scholar

  • 27.

    Takahashi, Y. K. et al. Neural quotes of envisioned results in the orbitofrontal cortex drive habits and knowing. Nerve Cell 80, 507– 518 (2013 ).

    CAS
    Article

    Google Scholar

  • 28.

    Stalnaker, T. A., Cooch, N. K. & & Schoenbaum, G. What the orbitofrontal cortex does refrain from doing. Nat. Neurosci 18, 620– 627 (2015 ).

    CAS
    Article

    Google Scholar

  • 29.

    Schoenbaum, G., Nugent, S. L., Saddoris, M. P. & & Setlow, B. Orbitofrontal sores in rats hinder turnaround however not acquisition of go, no-go smell discriminations. Neuroreport 13, 885– 890 (2002 ).

    Article

    Google Scholar

  • 30.

    Gardner, M. P. H., Conroy, J. S., Shaham, M. H., Styer, C. V. & & Schoenbaum, G. Lateral orbitofrontal inactivation dissociates devaluation-sensitive habits and financial option. Nerve Cell 96, 1192– 1203. e4 (2017 ).

    CAS
    Article

    Google Scholar

  • 31.

    Hirokawa, J., Vaughan, A., Masset, P., Ott, T. & & Kepecs, A. Frontal cortex nerve cell types unconditionally encode single choice variables. Nature 576, 446– 451 (2019 ).

    CAS
    Article

    Google Scholar

  • 32.

    Nogueira, R. et al. Lateral orbitofrontal cortex prepares for options and incorporates prior with existing details. Nat. Commun 8, 14823 (2017 ).

    ADS
    CAS
    Article

    Google Scholar

  • 33.

    Young, J. J. & & Shapiro, M. L. Dynamic coding of goal-directed courses by orbital prefrontal cortex. J. Neurosci 31, 5989– 6000 (2011 ).

    CAS
    Article

    Google Scholar

  • 34.

    Calhoun, V. D., Adali, T., Pearlson, G. D. & & Pekar, J. J. A technique for making group reasonings from practical MRI information utilizing independent element analysis. Hum. Brain Mapp 14, 140– 151 (2001 ).

    CAS
    Article

    Google Scholar

  • 35.

    Hyvärinen, A. & & Oja, E. Independent element analysis: algorithms and applications. Neural Netw 13, 411– 430 (2000 ).

    Article

    Google Scholar

  • 36.

    McKeown, M. J., Hansen, L. K. & & Sejnowsk, T. J. Independent element analysis of practical MRI: what is signal and what is sound? Curr. Opin. Neurobiol 13, 620– 629 (2003 ).

    CAS
    Article

    Google Scholar

  • 37.

    Wang, J. & & Chang, C.-I. Independent element analysis-based dimensionality decrease with applications in hyperspectral image analysis. IEEE Trans. Geosci. Remote Sens 44, 1586– 1600 (2006 ).

    ADS
    Article

    Google Scholar

  • 38.

    Bell, A. J. & & Sejnowski, T. J. An information-maximization method to blind separation and blind deconvolution. Neural Comput 7, 1129– 1159 (1995 ).

    CAS
    Article

    Google Scholar

  • 39.

    Long, Q. et al. Constant run choice for independent element analysis: application to FMRI analysis. In IEEE International Conference on Acoustics, Speech and Signal Processing 2581– 2585 (2018 ).

  • 40.

    Akhonda, M. A. B. S., Levin-Schwartz, Y., Bhinge, S., Calhoun, V. D. & & Adali, T. Successive self-reliance and connection change for multimodal blend: application to EEG and FMRI Data. In IEEE International Conference on Acoustics, Speech and Signal Processing 2311– 2315 (2018 ).

  • 41.

    Jia, C. et al. C– ICT for discovery of several associations in multimodal imaging information: application to blend of fMRI and DTI information. In 53rd Yearly Conference on Info Sciences and Systems 1– 5 (2019 ).

  • 42.

    Chang, C.-C. & & Lin, C.-J. LIBSVM: A library for assistance vector makers. ACM Trans. Intell. Syst. Technol 2, 27 (2011 ).

    Article

    Google Scholar

  • 43.

    Zhang, Y. et al. Object deciphering with attention in inferior temporal cortex. Proc. Natl Acad. Sci. U.S.A. 108, 8850– 8855 (2011 ).

    ADS
    CAS
    Article

    Google Scholar



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *