Chromothripsis drives the advancement of gene amplification in cancer


  • 1.

    Benner, S. E., Wahl, G. M. & & Von Hoff, D. D. Double minute chromosomes and homogeneously staining areas in growths taken straight from clients versus in human growth cell lines. Anticancer Drugs 2, 11– 25 (1991 ).

    CAS
    PubMed
    Article
    PubMed Central

    Google Scholar

  • 2.

    Turner, K. M. et al. Extrachromosomal oncogene amplification drives tumour advancement and hereditary heterogeneity. Nature 543, 122– 125 (2017 ).

    ADS
    CAS
    PubMed
    PubMed Central
    Article

    Google Scholar

  • 3.

    Albertson, D. G. Gene amplification in cancer. Trends Genet 22, 447– 455 (2006 ).

    MathSciNet
    CAS
    PubMed
    Article
    PubMed Central

    Google Scholar

  • 4.

    Alt, F. W., Kellems, R. E., Bertino, J. R. & & Schimke, R. T. Selective reproduction of dihydrofolate reductase genes in methotrexate-resistant versions of cultured murine cells. J. Biol. Chem 253, 1357– 1370 (1978 ).

    CAS
    PubMed
    PubMed Central

    Google Scholar

  • 5.

    Kaufman, R. J., Brown, P. C. & & Schimke, R. T. Enhanced dihydrofolate reductase genes in unstably methotrexate-resistant cells are connected with double minute chromosomes. Proc. Natl Acad. Sci. U.S.A. 76, 5669– 5673 (1979 ).

    ADS
    CAS
    PubMed
    Article
    PubMed Central

    Google Scholar

  • 6.

    Nunberg, J. H., Kaufman, R. J., Schimke, R. T., Urlaub, G. & & Chasin, L. A. Enhanced dihydrofolate reductase genes are localized to a homogeneously staining area of a single chromosome in a methotrexate-resistant Chinese hamster ovary cell line. Proc. Natl Acad. Sci. U.S.A. 75, 5553– 5556 (1978 ).

    ADS
    CAS
    PubMed
    Article
    PubMed Central

    Google Scholar

  • 7.

    Carroll, S. M. et al. Double minute chromosomes can be produced from precursors stemmed from a chromosomal removal. Mol. Cell. Biol 8, 1525– 1533 (1988 ).

    CAS
    PubMed
    PubMed Central
    Article

    Google Scholar

  • 8.

    Ruiz, J. C. & & Wahl, G. M. Chromosomal destabilization throughout gene amplification. Mol. Cell. Biol 10, 3056– 3066 (1990 ).

    CAS
    PubMed
    PubMed Central
    Article

    Google Scholar

  • 9.

    Coquelle, A., Rozier, L., Dutrillaux, B. & & Debatisse, M. Induction of several double-strand breaks within an hsr by meganucleaseI-SceI expression or vulnerable website activation results in development of double minutes and other chromosomal rearrangements. Oncogene 21, 7671– 7679 (2002 ).

    CAS
    PubMed
    Article
    PubMed Central

    Google Scholar

  • 10.

    Nathanson, D. A. et al. Targeted treatment resistance moderated by vibrant guideline of extrachromosomal mutant EGFR DNA. Science 343, 72– 76 (2014 ).

    ADS
    CAS
    PubMed
    Article

    Google Scholar

  • 11.

    The ICGC/TCGA Pan-Cancer Analysis of Entire Genomes Consortium. Pan-cancer analysis of entire genomes. Nature 578, 82– 93 (2020 ).

  • 12.

    Li, Y. et al. Patterns of somatic structural variation in human cancer genomes. Nature 578, 112– 121 (2020 ).

    ADS
    CAS
    PubMed
    PubMed Central
    Article

    Google Scholar

  • 13.

    Cortes-Ciriano, I. et al. Extensive analysis of chromothripsis in 2,658 human cancers utilizing whole-genome sequencing. Nat. Genet 52, 331– 341 (2020 ).

    CAS
    PubMed
    PubMed Central
    Article

    Google Scholar

  • 14.

    Stephens, P. J. et al. Enormous genomic rearrangement gotten in a single disastrous occasion throughout cancer advancement. Cell 144, 27– 40 (2011 ).

    MathSciNet
    CAS
    PubMed
    PubMed Central
    Article

    Google Scholar

  • 15.

    deCarvalho, A. C. et al. Discordant inheritance of chromosomal and extrachromosomal DNA components adds to vibrant illness advancement in glioblastoma. Nat. Genet 50, 708– 717 (2018 ).

    CAS
    PubMed
    PubMed Central
    Article

    Google Scholar

  • 16.

    Verhaak, R. G. W., Bafna, V. & & Mischel, P. S. Extrachromosomal oncogene amplification in tumour pathogenesis and advancement. Nat. Rev. Cancer 19, 283– 288 (2019 ).

    CAS
    PubMed
    PubMed Central
    Article

    Google Scholar

  • 17.

    Rausch, T. et al. Genome sequencing of pediatric medulloblastoma links disastrous DNA rearrangements with TP53 anomalies. Cell 148, 59– 71 (2012 ).

    CAS
    PubMed
    PubMed Central
    Article

    Google Scholar

  • 18.

    Nones, K. et al. Genomic disasters regularly emerge in esophageal adenocarcinoma and drive tumorigenesis. Nat. Commun 5, 5224 (2014 ).

    ADS
    CAS
    PubMed
    PubMed Central
    Article

    Google Scholar

  • 19.

    Ly, P. et al. Chromosome partition mistakes create a varied spectrum of easy and complicated genomic rearrangements. Nat. Genet 51, 705– 715 (2019 ).

    CAS
    PubMed
    PubMed Central
    Article

    Google Scholar

  • 20.

    Vocalist, M. J., Mesner, L. D., Friedman, C. L., Trask, B. J. & & Hamlin, J. L. Amplification of the human dihydrofolate reductase gene by means of double minutes is started by chromosome breaks. Proc. Natl Acad. Sci. U.S.A. 97, 7921– 7926 (2000 ).

    ADS
    CAS
    PubMed
    Article
    PubMed Central

    Google Scholar

  • 21.

    Windle, B., Draper, B. W., Yin, Y. X., O’Gorman, S. & & Wahl, G. M. A main function for chromosome damage in gene amplification, removal development, and amplicon combination. Genes Dev 5, 160– 174 (1991 ).

    CAS
    PubMed
    Article
    PubMed Central

    Google Scholar

  • 22.

    McClintock, B. The stability of damaged ends of chromosomes in Zea mays Genes 26, 234– 282 (1941 ).

    CAS
    PubMed
    PubMed Central

    Google Scholar

  • 23.

    Glodzik, D. et al. A somatic-mutational procedure constantly replicates germline vulnerability loci and tissue-specific super-enhancers in breast cancers. Nat. Genet 49, 341– 348 (2017 ).

    CAS
    PubMed
    PubMed Central
    Article

    Google Scholar

  • 24.

    Garsed, D. W. et al. The architecture and advancement of cancer neochromosomes. Cancer Cell 26, 653– 667 (2014 ).

    CAS
    PubMed
    Article
    PubMed Central

    Google Scholar

  • 25.

    Landry, J. J. et al. The genomic and transcriptomic landscape of a HeLa cell line. G3 (Bethesda) 3, 1213– 1224 (2013 ).

    Article
    CAS

    Google Scholar

  • 26.

    Zhang, C. Z. et al. Chromothripsis from DNA damage in micronuclei. Nature 522, 179– 184 (2015 ).

    ADS
    CAS
    PubMed
    PubMed Central
    Article

    Google Scholar

  • 27.

    Yaeger, R. et al. Systems of gotten resistance to BRAF V600E inhibition in colon cancers assemble on RAF dimerization and are delicate to its inhibition. Cancer Res 77, 6513– 6523 (2017 ).

    CAS
    PubMed
    PubMed Central
    Article

    Google Scholar

  • 28.

    Ly, P. et al. Selective Y centromere inactivation sets off chromosome shattering in micronuclei and repair work by non-homologous end signing up with. Nat. Cell Biol 19, 68– 75 (2017 ).

    CAS
    PubMed
    Article
    PubMed Central

    Google Scholar

  • 29.

    Shimizu, N., Hashizume, T., Shingaki, K. & & Kawamoto, J. K. Amplification of plasmids including a mammalian duplication initiation area is moderated by manageable dispute in between duplication and transcription. Cancer Res 63, 5281– 5290 (2003 ).

    CAS
    PubMed
    PubMed Central

    Google Scholar

  • 30.

    Maciejowski, J., Li, Y., Bosco, N., Campbell, P. J. & & de Lange, T. Chromothripsis and kataegis caused by telomere crisis. Cell 163, 1641– 1654 (2015 ).

    CAS
    PubMed
    PubMed Central
    Article

    Google Scholar

  • 31.

    Hoffelder, D. R. et al. Resolution of anaphase bridges in cancer cells. Chromosoma 112, 389– 397 (2004 ).

    PubMed
    Article

    Google Scholar

  • 32.

    Helleday, T., Petermann, E., Lundin, C., Hodgson, B. & & Sharma, R. A. DNA repair work paths as targets for cancer treatment. Nat. Rev. Cancer 8, 193– 204 (2008 ).

    CAS
    PubMed
    Article

    Google Scholar

  • 33.

    Cermak, T. et al. Effective style and assembly of custom-made TALEN and other TAL effector-based constructs for DNA targeting. Nucleic Acids Res 39, e82 (2011 ).

    CAS
    PubMed
    PubMed Central
    Article

    Google Scholar

  • 34.

    Fachinetti, D. et al. DNA sequence-specific binding of CENP-B improves the fidelity of human centromere function. Dev. Cell 33, 314– 327 (2015 ).

    CAS
    PubMed
    PubMed Central
    Article

    Google Scholar

  • 35.

    Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Techniques 9, 676– 682 (2012 ).

    CAS
    PubMed
    PubMed Central
    Article

    Google Scholar

  • 36.

    Ou, H. D. et al. ChromEMT: envisioning 3D chromatin structure and compaction in interphase and mitotic cells. Science 357, eaag0025 (2017 ).

    PubMed
    PubMed Central
    Article
    CAS

    Google Scholar

  • 37.

    Ou, H. D., Deerinck, T. J., Bushong, E., Ellisman, M. H. & & O’Shea, C. C. Envisioning viral protein structures in cells utilizing hereditary probes for associated light and electron microscopy. Techniques 90, 39– 48 (2015 ).

    CAS
    PubMed
    PubMed Central
    Article

    Google Scholar

  • 38.

    Rao, S. S. et al. A 3D map of the human genome at kilobase resolution exposes concepts of chromatin looping. Cell 159, 1665– 1680 (2014 ).

    CAS
    PubMed
    PubMed Central
    Article

    Google Scholar

  • 39.

    Li, H. & & Durbin, R. Quick and precise long-read positioning with Burrows-Wheeler change. Bioinformatics 26, 589– 595 (2010 ).

    PubMed
    PubMed Central
    Article
    CAS

    Google Scholar

  • 40.

    Raine, K. M. et al. ascatNgs: recognizing somatically gotten copy-number modifications from whole-genome sequencing information. Curr. Protoc. Bioinformatics 56, 15.9.1– 15.9.17 (2016 ).

    Article

    Google Scholar

  • 41.

    Nik-Zainal, S. et al. Landscape of somatic anomalies in 560 breast cancer whole-genome series. Nature 534, 47– 54 (2016 ).

    ADS
    CAS
    PubMed
    PubMed Central
    Article

    Google Scholar

  • 42.

    Korbel, J. O. & & Campbell, P. J. Criteria for reasoning of chromothripsis in cancer genomes. Cell 152, 1226– 1236 (2013 ).

    CAS
    PubMed
    Article
    PubMed Central

    Google Scholar

  • 43.

    Li, Y. et al. Constitutional and somatic rearrangement of chromosome 21 in intense lymphoblastic leukaemia. Nature 508, 98– 102 (2014 ).

    ADS
    CAS
    PubMed
    PubMed Central
    Article

    Google Scholar

  • 44.

    Alexandrov, L. B., Nik-Zainal, S., Wedge, D. C., Campbell, P. J. & & Stratton, M. R. Deciphering signatures of mutational procedures personnel in human cancer. Cell Associate 3, 246– 259 (2013 ).

    CAS
    PubMed
    PubMed Central
    Article

    Google Scholar



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *