Cell-type-specific asynchronous modulation of PKA by dopamine in finding out


  • 1.

    Bromberg-Martin, E. S., Matsumoto, M. & & Hikosaka, O. Dopamine in inspirational control: gratifying, aversive, and signaling. Nerve Cell 68, 815– 834 (2010 ).

    CAS
    PubMed
    PubMed Central
    Article

    Google Scholar

  • 2.

    Kravitz, A. V. & & Kreitzer, A. C. Striatal systems underlying motion, support, and penalty. Physiology (Bethesda) 27, 167– 177 (2012 ).


    Google Scholar

  • 3.

    Vidal-Gadea, A. G. & & Pierce-Shimomura, J. T. Saved function of dopamine in the modulation of habits. Commun. Integr. Biol 5, 440– 447 (2012 ).

    PubMed
    PubMed Central
    Article

    Google Scholar

  • 4.

    Steinberg, E. E. et al. Favorable support moderated by midbrain dopamine nerve cells needs D1 and D2 receptor activation in the nucleus accumbens. PLoS ONE 9, e94771 (2014 ).

    ADS
    PubMed
    PubMed Central
    Article
    CAS

    Google Scholar

  • 5.

    Hikida, T., Kimura, K., Wada, N., Funabiki, K. & & Nakanishi, S. Unique functions of synaptic transmission in direct and indirect striatal paths to reward and aversive habits. Nerve Cell 66, 896– 907 (2010 ).

    CAS
    PubMed
    Article

    Google Scholar

  • 6.

    Tsai, H. C. et al. Phasic shooting in dopaminergic nerve cells suffices for behavioral conditioning. Science 324, 1080– 1084 (2009 ).

    ADS
    CAS
    PubMed
    PubMed Central
    Article

    Google Scholar

  • 7.

    Steinberg, E. E. et al. A causal link in between forecast mistakes, dopamine nerve cells and knowing. Nat. Neurosci 16, 966– 973 (2013 ).

    CAS
    PubMed
    PubMed Central
    Article

    Google Scholar

  • 8.

    Saunders, B. T., Richard, J. M., Margolis, E. B. & & Janak, P. H. Dopamine nerve cells develop Pavlovian conditioned stimuli with circuit-defined inspirational homes. Nat. Neurosci 21, 1072– 1083 (2018 ).

    CAS
    PubMed
    PubMed Central
    Article

    Google Scholar

  • 9.

    Coddington, L. T. & & Dudman, J. T. The timing of action figures out benefit forecast signals in determined midbrain dopamine nerve cells. Nat. Neurosci 21, 1563– 1573 (2018 ).

    CAS
    PubMed
    PubMed Central
    Article

    Google Scholar

  • 10.

    Schultz, W., Dayan, P. & & Montague, P. R. A neural substrate of forecast and benefit. Science 275, 1593– 1599 (1997 ).

    CAS
    PubMed
    Article

    Google Scholar

  • 11.

    Cohen, J. Y., Haesler, S., Vong, L., Lowell, B. B. & & Uchida, N. Neuron-type-specific signals for benefit and penalty in the forward tegmental location. Nature 482, 85– 88 (2012 ).

    ADS
    CAS
    PubMed
    PubMed Central
    Article

    Google Scholar

  • 12.

    Eshel, N., Tian, J., Bukwich, M. & & Uchida, N. Dopamine nerve cells share typical action function for benefit forecast mistake. Nat. Neurosci 19, 479– 486 (2016 ).

    CAS
    PubMed
    PubMed Central
    Article

    Google Scholar

  • 13.

    Day, J. J., Roitman, M. F., Wightman, R. M. & & Carelli, R. M. Associative finding out moderates vibrant shifts in dopamine signaling in the nucleus accumbens. Nat. Neurosci 10, 1020– 1028 (2007 ).

    CAS
    PubMed
    Article

    Google Scholar

  • 14.

    Shen, W., Flajolet, M., Greengard, P. & & Surmeier, D. J. Dichotomous dopaminergic control of striatal synaptic plasticity. Science 321, 848– 851 (2008 ).

    ADS
    CAS
    PubMed
    PubMed Central
    Article

    Google Scholar

  • 15.

    Gerfen, C. R. et al. D1 and D2 dopamine receptor-regulated gene expression of striatonigral and striatopallidal nerve cells. Science 250, 1429– 1432 (1990 ).

    ADS
    CAS
    PubMed
    Article

    Google Scholar

  • 16.

    Kupchik, Y. M. et al. Coding the direct/indirect paths by D1 and D2 receptors is not legitimate for accumbens forecasts. Nat. Neurosci 18, 1230– 1232 (2015 ).

    CAS
    PubMed
    PubMed Central
    Article

    Google Scholar

  • 17.

    Skeberdis, V. A. et al. Protein kinase A controls calcium permeability of NMDA receptors. Nat. Neurosci 9, 501– 510 (2006 ).

    CAS
    PubMed
    Article
    PubMed Central

    Google Scholar

  • 18.

    Lee, H. K. et al. Phosphorylation of the AMPA receptor GluR1 subunit is needed for synaptic plasticity and retention of spatial memory. Cell 112, 631– 643 (2003 ).

    CAS
    PubMed
    Article
    PubMed Central

    Google Scholar

  • 19.

    Yagishita, S. et al. An important time window for dopamine actions on the structural plasticity of dendritic spinal columns. Science 345, 1616– 1620 (2014 ).

    ADS
    CAS
    PubMed
    PubMed Central
    Article

    Google Scholar

  • 20.

    Iino, Y. et al. Dopamine D2 receptors in discrimination knowing and spinal column augmentation. Nature 579, 555– 560 (2020 ).

    ADS
    CAS
    PubMed
    Article

    Google Scholar

  • 21.

    Lau, G. C., Saha, S., Faris, R. & & Russek, S. J. Up-regulation of NMDAR1 subunit gene expression in cortical nerve cells through a PKA-dependent path. J. Neurochem 88, 564– 575 (2004 ).

    CAS
    PubMed
    Article

    Google Scholar

  • 22.

    Nayak, A., Zastrow, D. J., Lickteig, R., Zahniser, N. R. & & Browning, M. D. Upkeep of late-phase LTP is accompanied by PKA-dependent boost in AMPA receptor synthesis. Nature 394, 680– 683 (1998 ).

    ADS
    CAS
    PubMed
    Article

    Google Scholar

  • 23.

    Lee, S. J., Chen, Y., Lodder, B. & & Sabatini, B. L. Keeping an eye on behaviorally caused biochemical modifications utilizing fluorescence life time photometry. Front. Neurosci 13, 766 (2019 ).

    PubMed
    PubMed Central
    Article

    Google Scholar

  • 24.

    Chen, Y., Saulnier, J. L., Yellen, G. & & Sabatini, B. L. A PKA activity sensing unit for quantitative analysis of endogenous GPCR signaling through 2-photon FRET-FLIM imaging. Front. Pharmacol 5, 56 (2014 ).

    PubMed
    PubMed Central
    Article
    CAS

    Google Scholar

  • 25.

    Chen, Y. et al. Endogenous Gαq-coupled neuromodulator receptors trigger protein kinase A. Nerve Cell 96, 1070– 1083. e5 (2017 ).

    CAS
    PubMed
    PubMed Central
    Article

    Google Scholar

  • 26.

    Mohebi, A. et al. Dissociable dopamine characteristics for finding out and inspiration. Nature 570, 65– 70 (2019 ).

    ADS
    CAS
    PubMed
    PubMed Central
    Article

    Google Scholar

  • 27.

    Dana, H. et al. Delicate red protein calcium indications for imaging neural activity. eLife 5, e12727 (2016 ).

    PubMed
    PubMed Central
    Article
    CAS

    Google Scholar

  • 28.

    Patriarchi, T. et al. Ultrafast neuronal imaging of dopamine characteristics with developed genetically encoded sensing units. Science 360, eaat4422 (2018 ).

    PubMed
    PubMed Central
    Article
    CAS

    Google Scholar

  • 29.

    Klapoetke, N. C. et al. Independent optical excitation of unique neural populations. Nat. Techniques 11, 338– 346 (2014 ).

    CAS
    PubMed
    PubMed Central
    Article

    Google Scholar

  • 30.

    Mahn, M. et al. High-efficiency optogenetic silencing with soma-targeted anion-conducting channelrhodopsins. Nat. Commun 9, 4125 (2018 ).

    ADS
    PubMed
    PubMed Central
    Article
    CAS

    Google Scholar

  • 31.

    Howe, M. W., Tierney, P. L., Sandberg, S. G., Phillips, P. E. M. & & Graybiel, A. M. Extended dopamine signalling in striatum signals distance and worth of far-off benefits. Nature 500, 575– 579 (2013 ).

    ADS
    CAS
    PubMed
    PubMed Central
    Article

    Google Scholar

  • 32.

    Matamales, M. et al. Regional D2- to D1-neuron transmodulation updates goal-directed knowing in the striatum. Science 367, 549– 555 (2020 ).

    ADS
    CAS
    PubMed
    Article

    Google Scholar

  • 33.

    Jiang, S. Z. et al. NCS-Rapgef2, the protein item of the neuronal Rapgef2 gene, is a particular activator of D1 dopamine receptor-dependent ERK phosphorylation in mouse brain. eNeuro 4, ENEURO.0248-17.2017 (2017 ).

    Article

    Google Scholar

  • 34.

    Ilango, A. et al. Comparable functions of substantia nigra and forward tegmental dopamine nerve cells in benefit and hostility. J. Neurosci 34, 817– 822 (2014 ).

    CAS
    PubMed
    PubMed Central
    Article

    Google Scholar

  • 35.

    Goto, A. et al. Circuit-dependent striatal PKA and ERK signaling underlies fast behavioral shift in breeding response of male mice. Proc. Natl Acad. Sci. U.S.A. 112, 6718– 6723 (2015 ).

    ADS
    CAS
    PubMed
    Article

    Google Scholar

  • 36.

    Yamaguchi, T. et al. Function of PKA signaling in D2 receptor-expressing nerve cells in the core of the nucleus accumbens in aversive knowing. Proc. Natl Acad. Sci. U.S.A. 112, 11383– 11388 (2015 ).

    ADS
    CAS
    PubMed
    Article

    Google Scholar

  • 37.

    Ma, L. et al. An extremely delicate A-kinase activity press reporter for imaging neuromodulatory occasions in awake mice. Nerve Cell 99, 665– 679. e5 (2018 ).

    CAS
    PubMed
    PubMed Central
    Article

    Google Scholar

  • 38.

    Collins, A. G. E. & & Frank, M. J. Challenger star knowing (OpAL): modeling interactive impacts of striatal dopamine on support knowing and option reward. Psychol. Rev 121, 337– 366 (2014 ).

    PubMed
    Article

    Google Scholar

  • 39.

    Gurney, K. N., Humphries, M. D. & & Redgrave, P. A brand-new structure for cortico-striatal plasticity: behavioural theory fulfills in vitro information at the reinforcement-action user interface. PLoS Biol 13, e1002034 (2015 ).

    PubMed
    PubMed Central
    Article
    CAS

    Google Scholar

  • 40.

    Gerfen, C. R. & & Surmeier, D. J. Modulation of striatal forecast systems by dopamine. Annu. Rev. Neurosci 34, 441– 466 (2011 ).

    CAS
    PubMed
    PubMed Central
    Article

    Google Scholar

  • 41.

    Gerfen, C. R., Paletzki, R. & & Heintz, N. GENSAT BAC Cre-recombinase motorist lines to study the practical company of cerebral cortical and basal ganglia circuits. Nerve Cell 80, 1368– 1383 (2013 ).

    CAS
    PubMed
    Article

    Google Scholar

  • 42.

    Bäckman, C. M. et al. Characterization of a mouse pressure revealing Cre recombinase from the 3 ′ untranslated area of the dopamine transporter locus. Genesis 44 , 383– 390 (2006 ).

    PubMed
    Article
    CAS

    Google Scholar

  • 43.

    Lee, S. J., Escobedo-Lozoya, Y., Szatmari, E. M. & & Yasuda, R. Activation of CaMKII in single dendritic spinal columns throughout long-lasting potentiation. Nature 458, 299– 304 (2009 ).

    ADS
    CAS
    PubMed
    PubMed Central
    Article

    Google Scholar

  • 44.

    Pnevmatikakis, E. A. et al. Synchronised denoising, deconvolution, and demixing of calcium imaging information. Nerve Cell 89, 285– 299 (2016 ).

    CAS
    PubMed
    PubMed Central
    Article

    Google Scholar

  • 45.

    Motulsky, H. J. How to report the techniques utilized for the blended design analysis https://www.graphpad.com/guides/prism/8/statistics/stat_how-to-report-the-methods-used.htm (2020 ).



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *